ÌâÄ¿ÄÚÈÝ
4£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=$\sqrt{5}$£¬µãP1¡¢P2·Ö±ðÊÇÇúÏßCµÄÁ½Ìõ½¥½üÏßl1¡¢l2ÉϵÄÁ½µã£¬¡÷OP1P2£¨OÎª×ø±êԵ㣩µÄÃæ»ýΪ9£¬µãPÊÇÇúÏßCÉϵÄÒ»µã£¬ÇÒ$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£®£¨1£©Çó´ËË«ÇúÏߵķ½³Ì£»
£¨2£©ÉèµãMÊÇ´ËË«ÇúÏßCÉϵÄÈÎÒâÒ»µã£¬¹ýµãM·Ö±ð×÷l1¡¢l2µÄƽÐÐÏß½»l2¡¢l1ÓÚA¡¢BÁ½µã£¬ÊÔÖ¤£ºÆ½ÐÐËıßÐÎOAMBµÄÃæ»ýΪ¶¨Öµ£®
£¨3£©ÈôµãMÊÇ´ËË«ÇúÏßCÉϲ»Í¬ÓÚʵÖá¶ËµãµÄÈÎÒâÒ»µã£¬Éè¦È=¡ÏF1MF2£¨F1¡¢F2·Ö±ðΪ˫ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£©£¬ÇҦȡÊ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]£¬ÊÔÇó|MF1|•|MF2|µÄ±ä»¯·¶Î§£®
·ÖÎö £¨1£©ÓÉË«ÇúÏßµÄÀëÐÄÂÊ$e=\frac{c}{a}=\sqrt{5}$£¬¿ÉµÃc=$\sqrt{5}a$£¬´Ó¶øµÃµ½Ë«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À2x£¬Éè${P}_{1}£¨{x}_{1}£¬{y}_{1}£©£¬{P}_{2}£¨{x}_{2}£¬{y}_{2}£©£¬P£¨x£¬y£©\$£¬ÀûÓÃ$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£¬°ÑPµÄ×ø±êÓÃP1¡¢P2µÄ×ø±ê±íʾ£¬ÔÙÓÉÓàÏÒ¶¨ÀíÇóµÃcos¡ÏP1OP2£¬½øÒ»²½µÃµ½sin¡ÏP1OP2£¬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½P1¡¢P2ºá×ø±êµÄ»ý£¬½áºÏPµãÔÚË«ÇúÏßÉϽâµÃ£ºa2=4£¬ÔòË«ÇúÏß·½³Ì¿ÉÇó£»
£¨2£©ÉèM£¨x0£¬y0£©£¬Ôò$4{{x}_{0}}^{2}-{{y}_{0}}^{2}=16$£¬ÔÙÉè³öÒ»ÌõƽÐÐy=2xµÄÖ±Ïß·½³Ì£¬ÓëÖ±Ïßy=-2xÁªÁ¢£¬ÇóµÃ½»µã×ø±ê£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇó³öMµ½Ö±Ïßy=-2xµÄ¾àÀ룬´úÈëËıßÐÎÃæ»ý¹«Ê½¼´¿ÉµÃµ½Ö¤Ã÷£»
£¨3£©ÓÉMΪ˫ÇúÏß$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$ÉÏÈÎÒâÒ»µã£¬ÀûÓÃË«ÇúÏߵ͍Òå¼°½¹µãÈý½ÇÐÎÖеÄÓàÏÒ¶¨Àí¿ÉµÃ$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$£¬ÔÙÓɦȡÊ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]ÇóµÃ´ð°¸£®
½â´ð £¨1£©½â£º¡ßË«ÇúÏßµÄÀëÐÄÂÊ$e=\frac{c}{a}=\sqrt{5}$£¬¡àc=$\sqrt{5}a$£¬
Ôò$b=\sqrt{£¨\sqrt{5}a£©^{2}-{a}^{2}}=2a$£¬
¡àË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À2x£¬
Éè${P}_{1}£¨{x}_{1}£¬{y}_{1}£©£¬{P}_{2}£¨{x}_{2}£¬{y}_{2}£©£¬P£¨x£¬y£©\$£¬
Ôò$|O{P}_{1}|=\sqrt{5}{x}_{1}£¬|O{P}_{2}|=\sqrt{5}{x}_{2}$£¬$|{P}_{1}{P}_{2}|=\sqrt{5{{x}_{1}}^{2}+5{{x}_{2}}^{2}+6{x}_{1}{x}_{2}}$£¬
¡ß$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£¬
¡à$x=\frac{{x}_{1}+2{x}_{2}}{2}£¬y=\frac{2{x}_{1}-4{x}_{2}}{3}$£¬¼´P£¨$\frac{{x}_{1}+2{x}_{2}}{2}£¬\frac{2{x}_{1}-4{x}_{2}}{3}$£©£¬
¿ÉÖªËùÇóË«ÇúÏß·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{4{a}^{2}}=1$£¬
¡ßµãPÔÚË«ÇúÏßÉÏ£¬
¡à$8{x}_{1}{x}_{2}=9{a}^{2}$£¬¢Ù
¡ß$cos¡Ï{P}_{1}O{P}_{2}=\frac{£¨\sqrt{5}{x}_{1}£©^{2}+£¨\sqrt{5}{x}_{2}£©^{2}-£¨5{{x}_{1}}^{2}+5{{x}_{2}}^{2}+6{x}_{1}{x}_{2}£©}{2¡Á\sqrt{5}{x}_{1}¡Á\sqrt{5}{x}_{2}}=-\frac{3}{5}$£¬
¡à$sin¡Ï{P}_{1}O{P}_{2}=\sqrt{1-£¨-\frac{3}{5}£©^{2}}=\frac{4}{5}$£®
ÓÖ¡ß${S}_{¡÷O{P}_{1}{P}_{2}}=\frac{1}{2}|O{P}_{1}|•|O{P}_{2}|•sin¡Ï{P}_{1}O{P}_{2}$=$\frac{1}{2}•\sqrt{5}{x}_{1}•\sqrt{5}{x}_{2}•\frac{4}{5}=2{x}_{1}{x}_{2}=9$£¬¢Ú
ÁªÁ¢¢Ù¢Ú½âµÃ£ºa2=4£¬Ôòb2=16£¬
¡àËùÇóË«ÇúÏß·½³ÌΪ$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$£»
£¨2£©Ö¤Ã÷£ºÉèM£¨x0£¬y0£©£¬Ôò$4{{x}_{0}}^{2}-{{y}_{0}}^{2}=16$£®
¡ßË«ÇúÏßCµÄ½¥½üÏß·½³ÌΪy=¡À2x£¬
¡àÉèÆäÖÐÒ»ÌõƽÐÐy=2xµÄÖ±Ïß·½³ÌΪy-y0=2£¨x-x0£©£¬¼´y=2x+y0-2x0£®
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+{y}_{0}-2{x}_{0}}\\{y=-2x}\end{array}\right.$£¬½âµÃ$x=\frac{2{x}_{0}-{y}_{0}}{4}£¬y=\frac{{y}_{0}-2{x}_{0}}{2}$£¬
¡à²»·ÁÉèµãA£¨$\frac{2{x}_{0}-{y}_{0}}{4}£¬\frac{{y}_{0}-2{x}_{0}}{2}$£©£¬Ôò|OA|=$\frac{\sqrt{5}}{4}|2{x}_{0}-{y}_{0}|$£¬
ÓÖµãMµ½Ö±Ïßy=-2xµÄ¾àÀëd=$\frac{|2{x}_{0}+{y}_{0}|}{\sqrt{5}}$£¬
¡à${S}_{ËıßÐÎOAMB}=|OA|•d=\frac{\sqrt{5}}{4}|2{x}_{0}-{y}_{0}|•\frac{|2{x}_{0}+{y}_{0}|}{\sqrt{5}}$=$\frac{1}{4}|4{{x}_{0}}^{2}-{{y}_{0}}^{2}|=\frac{1}{4}¡Á16=4$£¨¶¨Öµ£©£»
£¨3£©½â£º¡ßMΪ˫ÇúÏß$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$ÉÏÈÎÒâÒ»µã£¬
¡à|MF1|-|MF2|=¡À4£¬ÓÖ¦È=¡ÏF1MF2 £¬
¡à$4{c}^{2}=|M{F}_{1}{|}^{2}+|M{F}_{2}{|}^{2}-2|M{F}_{1}|•|M{F}_{2}|cos¦È$£¬
¼´$4¡Á20=£¨|M{F}_{1}|-|M{F}_{2}|£©^{2}+2|M{F}_{1}|•|M{F}_{2}|-2|M{F}_{1}|•|M{F}_{2}|cos¦È$£¬
¡à80=16+2|MF1|•|MF2|£¨1-cos¦È£©£¬
¼´$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$£®
¡à¦È¡Ê[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]£¬¡àcos¦È¡Ê[$\frac{1}{2}£¬\frac{\sqrt{2}}{2}$]£¬
Ôò1-cos¦È¡Ê[1-$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$]£¬
¡à$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$¡Ê[64£¬64+32$\sqrt{2}$]£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߵļòµ¥ÐÔÖÊ£¬¿¼²éÁËË«ÇúÏß·½³ÌµÄÇ󷨣¬¸ÃÌâ°ÑÇó½âÈý½ÇÐκÍÔ²×¶ÇúÏßÎÊÌâ½øÐÐÁ˽áºÏ£¬Ôö¼ÓÁË˼άÄѶȣ¬ÇÒÔËËãÁ¿¹ý´ó£¬µÚ¶þÎÊÖеֵ͍ÎÊÌ⣬ÌåÏÖÁËÕûÌåÔËËã˼Ïë·½·¨£®¸ÃÌâÊôÓڸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
| A£® | $\sqrt{3}$ | B£® | $2\sqrt{3}$ | C£® | 3 | D£® | 4 |
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{¦Ð}{4}$ | D£® | 1-$\frac{¦Ð}{4}$ |
| A£® | 2$\sqrt{6}$ | B£® | 4 | C£® | 4$\sqrt{6}$ | D£® | 8 |