题目内容

8.在△ABC中,角A,B,C的对边分别为a,b,c,∠A,∠B,∠C的大小成等差数列,且a=1,$b=\sqrt{3}$.则∠A的大小为(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 由∠A、∠B、∠C的大小成等差数列,利用等差数列的性质及内角和定理求出B的度数,确定出A+C的度数,利用正弦定理列出关系式,将a,b,sinB的值代入求出sinA的值,确定出A的度数即可得解.

解答 解:∵A,B,C成等差数列,
∴A+C=2B=π-B,
解得:B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,a=1,b=$\sqrt{3}$,
∴$\frac{1}{sinA}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,即sinA=$\frac{1}{2}$,
又∵0<A<$\frac{2π}{3}$,
∴A=$\frac{π}{6}$.
故选:C.

点评 此题考查了正弦定理,正弦函数的定义域与值域,等差数列的性质,熟练掌握正弦定理是解本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网