题目内容
3.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$.现有周长为2$\sqrt{2}$+$\sqrt{5}$的△ABC满足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为( )| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 由题意和正弦定理求出a:b:c,结合条件求出a、b、c的值,代入公式求出△ABC的面积.
解答 解:因为sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),
所以由正弦定理得,a:b:c=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),
又△ABC的周长为2$\sqrt{2}$+$\sqrt{5}$,
则a=($\sqrt{2}$-1)、b=$\sqrt{5}$、c=($\sqrt{2}$+1),
所以△ABC的面积S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-{(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})}^{2}]}$
=$\sqrt{\frac{1}{4}[{(\sqrt{2}+1)}^{2}{(\sqrt{2}-1)}^{2}-{(\frac{{(\sqrt{2}+1)}^{2}+{(\sqrt{2}-1)}^{2}-5}{2})}^{2}]}$
=$\sqrt{\frac{1}{4}{[1-(\frac{1}{2})}^{2}]}$=$\frac{\sqrt{3}}{4}$,
故选:A.
点评 本题考查正弦定理,以及新定义的应用,属于基础题.
练习册系列答案
相关题目
14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是1,2,4,则f(x)的单调递增区间是( )
| A. | [3k-$\frac{3}{2}$,3k],k∈Z | B. | [3k,3k+$\frac{3}{2}$],k∈Z | C. | [3kπ-$\frac{3}{2}$,3kπ],k∈Z | D. | [3kπ,3kπ+$\frac{3}{2}$],k∈Z |
18.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f($\frac{2π}{3}$)-f($\frac{π}{3}$)等于( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
10.已知一个算法的程序框图如图所示,当输出的结果为$\frac{1}{2}$时,则输入的x值为( )
| A. | $\sqrt{2}$ | B. | 1 | C. | -1或$\sqrt{2}$ | D. | -1或$\sqrt{10}$ |