题目内容
9.对命题“?x0∈R,x${\;}_{0}^{2}$-2x0+4>0”的否定正确的是( )| A. | $?{x_0}∈R\;,\;{x_0}^2-2{x_0}+4>0$ | B. | ?x∈R,x2-2x+4≤0 | ||
| C. | ?x∈R,x2-2x+4>0 | D. | ?x∈R,x2-2x+4≥0 |
分析 利用特称命题的否定是全称命题写出经过即可.
解答 解:因为特称命题的否定是全称命题,所以,命题“存在x0∈R,x02-2x0+4>0”的否定是:“任意x∈R,x2-2x+4≤0”.
故选:B.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关题目
14.甲、乙、丙、丁、戊五名同学站成一排,甲不站两端且不与乙相邻的排法数是( )
| A. | 24 | B. | 12 | C. | 48 | D. | 36 |
1.对于非零向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,下列命题正确的是( )
| A. | 若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,则λ1=λ2=0 | |
| B. | 若$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow a$在$\overrightarrow b$上的投影为$|\overrightarrow a|$ | |
| C. | 若$\overrightarrow a⊥\overrightarrow b$,则$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$ | |
| D. | 若$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c$,则$\overrightarrow a$=$\overrightarrow b$ |
18.若函数f(x)=$\left\{\begin{array}{l}{sin(2x-\frac{π}{6}),-π≤x<m}\\{cos(2x-\frac{π}{6}),m≤x≤\frac{π}{2}}\end{array}\right.$恰有4个零点,则m的取值范围为( )
| A. | [-$\frac{11π}{12}$,-$\frac{π}{6}$]∪($\frac{π}{12}$,$\frac{π}{3}$] | B. | (-$\frac{11π}{12}$,-$\frac{2π}{3}$]∪(-$\frac{5π}{12}$,-$\frac{π}{6}$]∪($\frac{π}{12}$,$\frac{π}{3}$] | ||
| C. | [-$\frac{11π}{12}$,-$\frac{π}{6}$)∪[$\frac{π}{12}$,$\frac{π}{3}$) | D. | [-$\frac{11π}{12}$,-$\frac{2π}{3}$)∪[-$\frac{5π}{12}$,-$\frac{π}{6}$)∪[$\frac{π}{12}$,$\frac{π}{3}$) |
14.某中学为了了解学生的文化素养与课外阅读时间的关系,对该校200名高二学生每天的平均课外阅读时间进行调查,结果如下表:(时间单位:分钟)
将学生每天平均课外阅读时间(分钟)在[40,60)内的学生评价为“课外阅读达标”
(Ⅰ)根据上述表格中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提想认为“课外阅读达标”与性别有关?
(Ⅱ)将上述调查所得的频率视为概率,现在从该校高二学生中抽取5名学生,记被抽取的5名学生中“课外阅读达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据.
| 每天平均阅读时间(分钟) | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
| 总人数 | 20 | 36 | 44 | 50 | 30 | 20 |
(Ⅰ)根据上述表格中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提想认为“课外阅读达标”与性别有关?
| 课外阅读不达标 | 课外阅读达标 | 合计 | |
| 男 | |||
| 女 | 30 | 90 | |
| 合计 |
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据.
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |