题目内容

已知数列{an}满足a1=
5
2
,且an=
4an-1-1
an-1+2
(n∈N*,且n≥2)
(Ⅰ)设bn=
1
an-1
,求证:{bn}是等差数列;
(Ⅱ)设cn=(n+1)•3nan,求{cn}的前n项和Sn
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出bn+1-bn=
1
an+1-1
-
1
an-1
=
an-1
3(an-1)
=
1
3
,由此能证明{bn}是等差数列.
(Ⅱ)由已知条件得an=
n+4
n+1
,从而cn=(n+1)•3n
n+4
n+1
=(n+4)•3n
,由此利用错位相减法能求出{cn}的前n项和Sn
解答: (Ⅰ)证明:∵数列{an}满足a1=
5
2
,且an=
4an-1-1
an-1+2

bn=
1
an-1

bn+1-bn=
1
an+1-1
-
1
an-1

=
1
4an-1
an+2
-
1
an-1

=…=
an-1
3(an-1)
=
1
3

∴{bn}是等差数列
(Ⅱ)解:∵bn=b1+(n-1)d=
1
a1-1
+(n-1)
1
3
=
n+1
3

1
an-1
=
n+1
3
,∴an=
n+4
n+1

cn=(n+1)•3n
n+4
n+1
=(n+4)•3n

由错位相减法得:
Sn=5×31+6×32+7×33+…+(n+3)×3n-1+(n+4)×3n,①
3Sn=5×32+6×33+7×34+…+(n+3)×3n+(n+4)×3n+1,②
①-②,得:
-2Sn=5×3+32+33+34+…+3n-(n+4)×3n+1
Sn=
2n+7
4
×3n+1-
21
4
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网