题目内容
已知数列{an}满足a1=
,且an=
(n∈N*,且n≥2)
(Ⅰ)设bn=
,求证:{bn}是等差数列;
(Ⅱ)设cn=(n+1)•3n•an,求{cn}的前n项和Sn.
| 5 |
| 2 |
| 4an-1-1 |
| an-1+2 |
(Ⅰ)设bn=
| 1 |
| an-1 |
(Ⅱ)设cn=(n+1)•3n•an,求{cn}的前n项和Sn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出bn+1-bn=
-
=
=
,由此能证明{bn}是等差数列.
(Ⅱ)由已知条件得an=
,从而cn=(n+1)•3n•
=(n+4)•3n,由此利用错位相减法能求出{cn}的前n项和Sn.
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| an-1 |
| 3(an-1) |
| 1 |
| 3 |
(Ⅱ)由已知条件得an=
| n+4 |
| n+1 |
| n+4 |
| n+1 |
解答:
(Ⅰ)证明:∵数列{an}满足a1=
,且an=
,
bn=
,
∴bn+1-bn=
-
=
-
=…=
=
,
∴{bn}是等差数列
(Ⅱ)解:∵bn=b1+(n-1)d=
+(n-1)
=
,
∴
=
,∴an=
,
∴cn=(n+1)•3n•
=(n+4)•3n
由错位相减法得:
Sn=5×31+6×32+7×33+…+(n+3)×3n-1+(n+4)×3n,①
3Sn=5×32+6×33+7×34+…+(n+3)×3n+(n+4)×3n+1,②
①-②,得:
-2Sn=5×3+32+33+34+…+3n-(n+4)×3n+1,
∴Sn=
×3n+1-
.
| 5 |
| 2 |
| 4an-1-1 |
| an-1+2 |
bn=
| 1 |
| an-1 |
∴bn+1-bn=
| 1 |
| an+1-1 |
| 1 |
| an-1 |
=
| 1 | ||
|
| 1 |
| an-1 |
=…=
| an-1 |
| 3(an-1) |
| 1 |
| 3 |
∴{bn}是等差数列
(Ⅱ)解:∵bn=b1+(n-1)d=
| 1 |
| a1-1 |
| 1 |
| 3 |
| n+1 |
| 3 |
∴
| 1 |
| an-1 |
| n+1 |
| 3 |
| n+4 |
| n+1 |
∴cn=(n+1)•3n•
| n+4 |
| n+1 |
由错位相减法得:
Sn=5×31+6×32+7×33+…+(n+3)×3n-1+(n+4)×3n,①
3Sn=5×32+6×33+7×34+…+(n+3)×3n+(n+4)×3n+1,②
①-②,得:
-2Sn=5×3+32+33+34+…+3n-(n+4)×3n+1,
∴Sn=
| 2n+7 |
| 4 |
| 21 |
| 4 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目