题目内容

已知函数f(x)=2cos2x+2
3
sinxcosx+
1
2

(Ⅰ)求f(x)的最小正周期与单调递增区间;
(Ⅱ)当x∈[0,
π
2
]时,求f(x)的最大值和最小值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x+
π
6
)+
3
2
,由周期公式即可求T,由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z即可解得f(x)的单调递增区间.(2)由0≤x≤
π
2
,可得
π
6
≤2x+
π
6
6
,从而有-
1
2
≤sin(2x+
π
6
)≤1,即可求得f(x)的最大值和最小值.
解答: 解:(1)∵f(x)=2sin(2x+
π
6
)+
3
2

∴T=
2
=π,
∴由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z即可解得:kπ-
π
3
≤x≤kπ+
π
6
,k∈Z.
∴f(x)的单调递增区间是:[kπ-
π
3
,kπ+
π
6
],k∈Z…(6分)
(2)∵0≤x≤
π
2

π
6
≤2x+
π
6
6

∴-
1
2
≤sin(2x+
π
6
)≤1,
∴f(x)的最大值为
7
2
,最小值为
1
2
.…(12分)
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象和性质,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网