题目内容
已知等差数列{an}的各项均为正数,a1=3,a3=7,其前n项和为Sn,{bn}为等比数列,b1=2,且b2S2=32.
(Ⅰ)求an与bn;
(Ⅱ)证明
+
+…+
<
.
(Ⅰ)求an与bn;
(Ⅱ)证明
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
| 3 |
| 4 |
考点:等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设{an}的公差为d(d>0),{bn}的公比为q,由已知求得等差数列的公差和公比,则an与bn可求;
(Ⅱ)求出等差数列的前n项和,把
+
+…+
利用裂项相消法化简后放缩得答案.
(Ⅱ)求出等差数列的前n项和,把
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
解答:
解:(Ⅰ)设{an}的公差为d(d>0),{bn}的公比为q,
则an=3+(n-1)d,bn=2qn-1,
∴a3=3+2d=7,d=2.
再由b2S2=32,得2q(6+2)=32,∴q=2.
∴an=2n+1,bn=2n;
(Ⅱ)Sn=a1+a2+…+an=
=n(n+2),
∴
+
+…+
=
+
+
+…+
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)=
-
<
.
则an=3+(n-1)d,bn=2qn-1,
∴a3=3+2d=7,d=2.
再由b2S2=32,得2q(6+2)=32,∴q=2.
∴an=2n+1,bn=2n;
(Ⅱ)Sn=a1+a2+…+an=
| (3+2n+1)n |
| 2 |
∴
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
| 3 |
| 4 |
点评:本题考查了等差数列的性质,考查了裂项相消法求数列的前n项和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目
若不等式x2+2x-3≥0的解集是( )
| A、{x|-3≤x≤1} |
| B、{x|x≤-3或x≥1} |
| C、{x|x≥1} |
| D、{x|x≤-3} |
已知log
m>log
n,则正实数m,n的大小关系为( )
| 1 |
| 3 |
| 1 |
| 3 |
| A、m>n | B、m≥n |
| C、m<n | D、m≤n |
x-2=0是(x-2)(x+3)=0的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不是充分条件,也不是必要条件 |