题目内容

8.设f(x)=$\left\{\begin{array}{l}2{e^{x-1}}\;,x<3\\{log_3}({x^2}-1),x≥3\end{array}$,则$f(f(\sqrt{10}))$=(  )
A.1B.2C.2eD.2e2

分析 直接利用函数的解析式,由里及外逐步求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}2{e^{x-1}}\;,x<3\\{log_3}({x^2}-1),x≥3\end{array}$,
∵$f(\sqrt{10})={log_3}9=2$,∴$f(f(\sqrt{10}))=f(2)=2{e^{2-1}}=2e$,
故选:C.

点评 本题考查分段函数的应用,函数在的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网