题目内容

16.2016年是我国重点打造“智慧城市”的一年,主要在“智慧技术、智慧产业、智慧应用、智慧服务、智慧治理、智慧人文、智慧生活”7个方面进行智慧化.现假设某一城市目前各项指标分数x(满分10分)与智慧城市级别y(级)的有关数据如表:
 项目 智慧技术智慧产业  智慧应用智慧服务  智慧治理智慧人文  智慧生活
 指标分数x 6.8 7 6.8 6.8 7.2 7 7.4
 智慧级别y 8.8 9.19.2  8.89.1 
(1)请根据表中的数据,求出y关于x的线性回归方程;
(2)从智慧城市级别的7项指标中随机抽取1项指标,级别在区间[9.1,10)内记10分,在区间[9,9.1)内记6分,在区间[8,9)内记5分.现从中随机抽取2项指标考查,记得分总和为ξ,求ξ的分布列与数学期望.
附:回归直线的斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x)}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

分析 (1)根据回归系数公式计算回归系数,得出回归方程;
(2)根据各项指标的分数分布得出ξ的取值情况,计算各种可能的概率得到分布列,代入公式计算数学期望.

解答 解:(1)$\overline{x}$=$\frac{1}{7}×(6.8+7+6.8+6.8+7.2+7+7.4)$=7,
$\overline{y}=\frac{1}{7}×(9+8.8+9+9.1+9.2+8.8+9.1)$=9.
$\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=0+0+0+(-0.2)×0.1+0.2×0.2+0+0.4×0.1=0.06.
$\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$=0.04+0+0.04+0.06+0.04+0+0.16=0.34.
∴$\stackrel{∧}{b}$=$\frac{0.06}{0.34}$=$\frac{3}{17}$.$\stackrel{∧}{a}$=9-$\frac{3}{17}×7$=$\frac{132}{17}$.
∴y关于x的线性回归方程为$\stackrel{∧}{y}$=$\frac{3}{17}x$+$\frac{132}{17}$.
(2)级别在[9.1,10)内的有3项,在区间[9,9.1)内的有两项,在区间[8,9)内的有两项.
∴从中随机抽取2项指标考查,总得分ξ的取值集合为{10,11,12,15,16,20}.
从7项指标中随机抽取两项共有${C}_{7}^{2}$=21个基本事件,
P(ξ=10)=$\frac{{C}_{2}^{2}}{21}=\frac{1}{21}$,P(ξ=11)=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{21}=\frac{4}{21}$,P(ξ=12)=$\frac{{C}_{2}^{2}}{21}=\frac{1}{21}$,
P(ξ=15)=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{21}=\frac{2}{7}$,P(ξ=16)=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{21}=\frac{2}{7}$,P(ξ=20)=$\frac{{C}_{3}^{2}}{21}=\frac{1}{7}$.
∴ξ的分布列为:

 ξ 10 11 12 15 16 20
 P $\frac{1}{21}$ $\frac{4}{21}$ $\frac{1}{21}$ $\frac{2}{7}$ $\frac{2}{7}$ $\frac{1}{7}$
∴ξ的数学期望E(ξ)=10×$\frac{1}{21}$+11×$\frac{4}{21}$+12×$\frac{1}{21}$+15×$\frac{2}{7}$+16×$\frac{2}{7}$+20×$\frac{1}{7}$=$\frac{104}{7}$.

点评 本题考查了回归方程的求解,随机变量的分布列和数学期望,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网