ÌâÄ¿ÄÚÈÝ
13£®PM2.5ÊÇÖ¸¿ÕÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎΪÁË̽¾¿³µÁ÷Á¾ÓëPM2.5µÄŨ¶ÈÊÇ·ñÏà¹Ø£¬Ïֲɼ¯µ½Ä³³ÇÊÐÖÜÒ»ÖÁÖÜÎåijһʱ¼ä¶Î³µÁ÷Á¿ÓëPM2.5µÄŨ¶ÈµÄÊý¾ÝÈçÏÂ±í£º| ʱ¼ä | ÖÜÒ» | Öܶþ | ÖÜÈý | ÖÜËÄ | ÖÜÎå |
| ³µÁ÷Á¿x£¨ÍòÁ¾£© | 100 | 102 | 108 | 114 | 116 |
| PM2.5µÄŨ¶Èy£¨Î¢¿Ë/Á¢·½Ã×£© | 78 | 80 | 84 | 88 | 90 |
£¨¢ò£©ÈôÖÜÁùͬһʱ¼ä¶Î³µÁ÷Á¿ÊÇ200ÍòÁ¾£¬ÊÔ¸ù¾Ý£¨¢ñ£©ÖÐÇó³öµÄÏßÐԻع鷽³ÌÔ¤²â£¬´ËʱPM2.5µÄŨ¶ÈÊǶàÉÙ£¿
¸½£ºÏßÐԻع鷽³Ì$\hat y=\hat bx+\hat a$ÖÐϵÊý¼ÆË㹫ʽ£º$\hat b=\frac{{\sum_{i=1}^n{£¨\;{x_i}-\overline x\;£©£¨\;{y_i}-\overline y\;£©}}}{{\sum_{i=1}^n{{{£¨\;{x_i}-\overline x\;£©}^2}}}}$£¬$\hat a=\overline y-\hat b\;\overline x$£¬ÆäÖÐ$\overline x$¡¢$\overline y$±íʾÑù±¾¾ùÖµ£®
·ÖÎö £¨I£©¸ù¾Ý»Ø¹éϵÊý¹«Ê½¼ÆËã»Ø¹éϵÊýµÃ³ö»Ø¹é·½³Ì£»
£¨II£©°Ñx=200´úÈë»Ø¹é·½³Ì½â³öy£®
½â´ð ½â£º£¨¢ñ£©$\overline x=\frac{1}{5}\sum_{i=1}^5{x_i}=108$£¬$\overline y=\frac{1}{5}\sum_{i=1}^5{y_i}=84$£¬$\sum_{i=1}^5{£¨{x_i}-\overline x£©£¨{y_i}-\bar y£©}=144$£¬$\sum_{i=1}^5{{{£¨{x_i}-\overline x£©}^2}}=200$£®
¡à$\hat b=\frac{144}{200}=0.72$£¬$\hat a=\overline y-\hat b\;\overline x=84-0.72¡Á108=6.24$£®
¡ày¹ØÓÚxµÄÏßÐԻع鷽³ÌÊÇy=0.72x+6.24£®
£¨¢ò£©µ±x=200ʱ£¬y=0.72¡Á200+6.24=150.24£®
¿ÉÒÔÔ¤²â´ËʱPM2.5µÄŨ¶ÈÊÇ150.24΢¿Ë/Á¢·½Ã×£®
µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇó½â¼°Ó¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®
²ËÅ©¶¨ÆÚʹÓõͺ¦É±³æÅ©Ò©¶ÔÊ߲˽øÐÐÅçÈ÷£¬ÒÔ·ÀÖ¹º¦³æµÄΣº¦£¬µ«²É¼¯ÉÏÊÐʱÊß²ËÈÔ´æÓÐÉÙÁ¿µÄ²ÐÁôũҩ£¬Ê¹ÓÃʱÐèÒªÓÃÇåË®ÇåÏ´¸É¾»£¬Èç±íÊÇÓÃÇåË®x£¨µ¥Î»£ºÇ§¿Ë£©ÇåÏ´¸ÃÊß²Ë1ǧ¿Ëºó£¬Êß²ËÉϲÐÁôµÄũҩy£¨µ¥Î»£ºÎ¢¿Ë£©µÄͳ¼Æ±í£º
£¨¢ñ£©ÔÚÈçͼµÄ×ø±êϵÖУ¬Ãè³öÉ¢µãͼ£¬²¢ÅжϱäÁ¿xÓëyµÄÏà¹ØÐÔ£»
£¨¢ò£©ÈôÓýâÎöʽ$\widehat{y}$=cx2+d×÷ΪÊß²Ëũҩ²ÐÁ¿$\widehat{y}$ÓëÓÃË®Á¿xµÄ»Ø¹é·½³Ì£¬Áî¦Ø=x2£¬¼ÆËãÆ½¾ùÖµ$\overline{¦Ø}$ºÍ$\overline{y}$£¬Íê³ÉÈçϱí¸ñ£¬Çó³ö$\widehat{y}$Óëx»Ø¹é·½³Ì£®£¨c£¬d¾«È·µ½0.01£©
£¨¢ó£©¶ÔÓÚijÖÖ²ÐÁôÔÚÊß²ËÉϵÄũҩ£¬µ±ËüµÄ²ÐÁôÁ¿µÍÓÚ20΢¿Ëʱ¶ÔÈËÌåÎÞº¦£¬ÎªÁË·ÅÐÄʳÓøÃÊ߲ˣ¬Çë¹À¼ÆÐèÒª¶àÉÙǧ¿ËµÄÇåˮϴһǧ¿ËÊ߲ˣ¿£¨¾«È·µ½0.1£¬²Î¿¼Êý¾Ý$\sqrt{5}$¡Ö2.236£©£®
£¨¸½£ºÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$ÖÐϵÊý¼ÆË㹫ʽ·Ö±ðΪ£º
$\widehat{b}$=$\frac{\sum_{i-1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®£©
| x | 1 | 2 | 3 | 4 | 5 |
| y | 58 | 54 | 39 | 29 | 10 |
£¨¢ò£©ÈôÓýâÎöʽ$\widehat{y}$=cx2+d×÷ΪÊß²Ëũҩ²ÐÁ¿$\widehat{y}$ÓëÓÃË®Á¿xµÄ»Ø¹é·½³Ì£¬Áî¦Ø=x2£¬¼ÆËãÆ½¾ùÖµ$\overline{¦Ø}$ºÍ$\overline{y}$£¬Íê³ÉÈçϱí¸ñ£¬Çó³ö$\widehat{y}$Óëx»Ø¹é·½³Ì£®£¨c£¬d¾«È·µ½0.01£©
| ¦Ø | 1 | 4 | 9 | 16 | 25 |
| y | 58 | 54 | 39 | 29 | 10 |
| ¦Øi-$\overline{¦Ø}$ | |||||
| yi-$\overline{y}$ |
£¨¸½£ºÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$ÖÐϵÊý¼ÆË㹫ʽ·Ö±ðΪ£º
$\widehat{b}$=$\frac{\sum_{i-1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®£©
1£®Ä³µ¥Î»ÎªÁËÁ˽â°ì¹«Â¥ÓõçÁ¿y£¨¶È£©ÓëÆøÎÂx£¨¡æ£©Ö®¼äµÄ¹ØÏµ£¬Ëæ»úͳ¼ÆÁËËĸö¹¤×÷ÈÕµÄÓõçÁ¿Óëµ±ÌìÆ½¾ùÆøÎ£¬²¢ÖÆ×÷Á˶ÔÕÕ±í£º
ÓɱíÖÐÊý¾ÝµÃµ½ÏßÐԻع鷽³Ìy=nx+m£¬ÈôÑù±¾µãµÄÖÐÐÄΪ£¨$\overline{x}$£¬40£©£¬Ôòµ±ÆøÎ½µµÍ2¡æÊ±£¬ÓõçÁ¿£¨¡¡¡¡£©
| ÆøÎ£¨¡æ£© | 18 | 13 | 10 | -1 |
| ÓõçÁ¿£¨¶È£© | 24 | m-26 | 38 | 66+n |
| A£® | Ôö¼Ó4¶È | B£® | ½µµÍ4¶È | C£® | Ôö¼Ó120¶È | D£® | ½µµÍ120¶È |
8£®Éèf£¨x£©=$\left\{\begin{array}{l}2{e^{x-1}}\;£¬x£¼3\\{log_3}£¨{x^2}-1£©£¬x¡Ý3\end{array}$£¬Ôò$f£¨f£¨\sqrt{10}£©£©$=£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 2e | D£® | 2e2 |
18£®Ä³Ñо¿ÐÔѧϰС×é¶Ô´º¼¾Öçҹβî´óСÓëij»¨»ÜÖÖ×Ó·¢Ñ¿¶àÉÙÖ®¼äµÄ¹ØÏµ½øÐÐÑо¿£®ËûÃÇ·Ö±ð¼Ç¼ÁË5ÔÂ15ÈÕÖÁ5ÔÂ19ÈÕµÄÿÌìÖçҹβîÓëʵÑéÊÒÿÌì200¿ÅÖÖ×Ó½þÅݺóµÄ·¢Ñ¿Êý£®µÃµ½ÈçÏÂ×ÊÁÏ£º
£¨I£©´Ó5ÔÂ15ÈÕÖÁ5ÔÂ19ÈÕÖÐÈÎÑ¡3Ì죮¼Ç·¢Ñ¿µÄÖÖ×ÓÊý·Ö±ðΪa£¬b£¬c£®Çóʼþ¡°a£¬b£¬c¾ùСÓÚ50¡±µÄ¸ÅÂÊ£®
£¨¢ò£©Çë¸ù¾Ý5ÔÂ15ÈÕÖÁ5ÔÂ17ÈÕµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£»
£¨¢ó£©ÈôÓÉÏßÐԻع鷽³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëËùÑ¡³öµÄ¼ìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý5¿Å£¬ÔòÈÏΪµÃµ½µÄÏßÐԻع鷽³ÌÊǿɿ¿µÄ£¬ÊÔÎÊ£¨¢ò£©ËùµÃµÄÏßÐԻع鷽³ÌÊÇ·ñ¿É¿¿£¿¿É¿¿£®
| ÈÕ¡¡¡¡¡¡¡¡ÆÚ | 5ÔÂ15ÈÕ | 5ÔÂ16ÈÕ | 5ÔÂ17ÈÕ | 5ÔÂ18ÈÕ | 5ÔÂ19ÈÕ |
| βîx£¨¡ãC£© | 15 | 14 | 8 | 17 | 16 |
| ·¢Ñ¿Êýy£¨¿Å£© | 50 | 46 | 32 | 60 | 52 |
£¨¢ò£©Çë¸ù¾Ý5ÔÂ15ÈÕÖÁ5ÔÂ17ÈÕµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£»
£¨¢ó£©ÈôÓÉÏßÐԻع鷽³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëËùÑ¡³öµÄ¼ìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý5¿Å£¬ÔòÈÏΪµÃµ½µÄÏßÐԻع鷽³ÌÊǿɿ¿µÄ£¬ÊÔÎÊ£¨¢ò£©ËùµÃµÄÏßÐԻع鷽³ÌÊÇ·ñ¿É¿¿£¿¿É¿¿£®
5£®Í¬Ê±Í¶ÖÀÁ½Ã¶±ÒÒ»´Î£¬ÄÇô»¥³â¶ø²»¶ÔÁ¢µÄÁ½¸öʼþÊÇ£¨¡¡¡¡£©
| A£® | ¡°ÖÁÉÙÓÐ1¸öÕýÃæ³¯ÉÏ¡±£¬¡°¶¼ÊÇ·´Ã泯ÉÏ¡± | |
| B£® | ¡°ÖÁÉÙÓÐ1¸öÕýÃæ³¯ÉÏ¡±£¬¡°ÖÁÉÙÓÐ1¸ö·´Ã泯ÉÏ¡± | |
| C£® | ¡°Ç¡ÓÐ1¸öÕýÃæ³¯ÉÏ¡±£¬¡°Ç¡ÓÐ2¸öÕýÃæ³¯ÉÏ¡± | |
| D£® | ¡°ÖÁÉÙÓÐ1¸ö·´Ã泯ÉÏ¡±£¬¡°¶¼ÊÇ·´Ã泯ÉÏ¡± |