题目内容

17.观察下列等式:
a2-b2=(a-b)(a+b)
a3-b3=(a-b)(a2+ab+b2
a4-b4=(a-b)(a3+a2b+ab2+b3),…,
照此规律,an-bn=(a-b)(an-1+an-2b+…+abn-2+bn-1)(n≥2,n∈N)

分析 根据所给信息,可知各个等式的左边两因式中,一项为(a-b),另一项每一项的次数均为n-1,而且按照字母a的降幂排列,故可得答案.

解答 解:由题意,当n=1时,有(a-b)(a+b)=a2-b2
当n=2时,有(a-b)(a2+ab+b2)=a3-b3
当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4
当n=4时,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5
所以得到猜想:当n∈N*时,有(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn
故答案为(a-b)(an-1+an-2b+…+abn-2+bn-1).

点评 本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b),另一项每一项的次数均为n-1,而且按照字母a的降幂排列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网