题目内容
1.有分别写着数字1到120的120张卡片,从中取出1张,这样卡片上的数字是2的倍数或是3的倍数的概率是( )| A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{7}$ | D. | $\frac{2}{3}$ |
分析 卡片上的数字是2的倍数的有60个,是3的倍数的有40个,是6的倍数的有20个,由此能求出卡片上的数字是2的倍数或是3的倍数的概率.
解答 解:有分别写着数字1到120的120张卡片,从中取出1张,
基本事件总数为120,
这样卡片上的数字是2的倍数的有60个,是3的倍数的有40个,是6的倍数的有20个,
∴卡片上的数字是2的倍数或是3的倍数的有60+40-20=80个,
∴卡片上的数字是2的倍数或是3的倍数的概率p=$\frac{80}{120}$=$\frac{2}{3}$.
故选:D.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
练习册系列答案
相关题目
9.某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
已知A型汽车的购买量y与价格x符合如下线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?
| 车型 | A型 | B型 | C型 |
| 频数 | 20 | 40 | 40 |
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
| 价格(万元) | 25 | 23.5 | 22 | 20.5 |
| 销售量(辆) | 30 | 33 | 36 | 39 |
13.函数$f(x)={log_a}({a{x^2}-x})({0<a<1})$,则该函数的单调减区间为( )
| A. | (-∞,0) | B. | $({-∞,\frac{1}{2a}})$ | C. | $({0,\frac{1}{a}})$ | D. | $({\frac{1}{a},+∞})$ |
10.数列$1,-\frac{3}{4},\frac{1}{2},-\frac{5}{16},…$的一个通项公式为( )
| A. | ${(-1)^n}\frac{n+1}{2n}$ | B. | ${(-1)^{n+1}}\frac{2n-1}{2n}$ | C. | ${(-1)^{n+1}}\frac{n+1}{2^n}$ | D. | ${(-1)^{n+1}}\frac{2n-1}{2^n}$ |