题目内容

19.一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O上,球O的表面积为(  )
A.16πB.C.$4\sqrt{3}π$D.12π

分析 由三视图可知:该几何体是一个三棱锥,如图所示,AB=AC=AD=2,且AB,AC,AD两两垂直.把此三棱锥补成正方体,则这个空间几何体的外接球的直径为此正方体的对角线,即可得出.

解答 解:由三视图可知:该几何体是一个三棱锥,如图所示,AB=AC=AD=2,且AB,AC,AD两两垂直.
把此三棱锥补成正方体,则这个空间几何体的外接球的直径为此正方体的对角线2$\sqrt{3}$,
因此这个空间几何体的外接球的表面积S=4π•3=12π.
故选:D.

点评 本题考查了三棱锥的三视图、正方体的外接球的表面积计算,考查了计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网