题目内容
计算
(1)lg
-lg
+lg12.5-log89•log34+2log0.53
(2)51-log0.23-(log43+log83)(log32+log92)
(1)lg
| 1 |
| 2 |
| 5 |
| 8 |
(2)51-log0.23-(log43+log83)(log32+log92)
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数和指数的运算法则、运算性质和换底公式求解.
解答:
解:(1)lg
-lg
+lg12.5-log89•log34+2log0.53
=lg(
×
×12.5)-
×
+2log2
=1-
+
=0.
(2)51-log0.23-(log43+log83)(log32+log92)
=5÷5log5
-(log6427+log649)(log94+log92)
=15-
×
=15-
=
.
| 1 |
| 2 |
| 5 |
| 8 |
=lg(
| 1 |
| 2 |
| 8 |
| 5 |
| lg9 |
| lg8 |
| lg4 |
| lg3 |
| 1 |
| 3 |
=1-
| 4 |
| 3 |
| 1 |
| 3 |
=0.
(2)51-log0.23-(log43+log83)(log32+log92)
=5÷5log5
| 1 |
| 3 |
=15-
| lg35 |
| lg26 |
| lg23 |
| lg32 |
=15-
| 15 |
| 12 |
=
| 55 |
| 4 |
点评:本题考查对数式和指数式的求法,是基础题,解题时要认真审题,注意运算性质的合理运用.
练习册系列答案
相关题目
已知函数f(x)=
(et-e-t)dt,则不等式f(loga2)+f(loga
)≤2f(1)的解集为( )
| ∫ | x 0 |
| 1 |
| 2 |
A、(0,
| ||
| B、[2,+∞) | ||
C、[
| ||
D、(0,
|