题目内容
5.设偶函数f(x)满足f(x)=2x-4(x≥0),则满足f(a-2)>0的实数a的取值范围为( )| A. | (2,+∞) | B. | (4,+∞) | C. | (0,4) | D. | (-∞,0)∪(4,+∞) |
分析 根据函数奇偶性和单调性之间的关系,即可得到结论.
解答 解:∵偶函数f(x)满足f(x)=2x-4(x≥0),
∴函数f(x)在[0,+∞)上为增函数,f(2)=0
∴不等式f(a-2)>0等价为f(|a-2|)>f(2),
即|a-2|>2,
即a-2>2或a-2<-2,
解得a>4或a<0,
故选D.
点评 本题主要考查不等式的求解,以及函数奇偶性和单调性的应用,综合考查函数的性质.
练习册系列答案
相关题目
13.函数f(x)=cos2x的周期是T,将f(x)的图象向右平移$\frac{T}{4}$个单位长度后得到函数g(x),则g(x)具有性质( )
| A. | 最大值为1,图象关于直线x=$\frac{π}{2}$对称 | B. | 在(0,$\frac{π}{4}$)上单调递增,为奇函数 | ||
| C. | 在($-\frac{3π}{8}$,$\frac{π}{8}$)上单点递增,为偶函数 | D. | 周期为π,图象关于点($\frac{3π}{8}$,0)对称 |
10.设函数f(x)(x∈R)满足f(x-π)=f(x)+sinx,当0≤x≤π,f(x)=1时,则$f({-\frac{13π}{6}})$=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |