ÌâÄ¿ÄÚÈÝ
14£®É躯Êýf£¨x£©¡¢g£¨x£©µÄ¶¨ÒåÓò·Ö±ðΪA£¬B£¬ÇÒA⊆B£¬Èô¶ÔÓÚÈÎÒâx¡ÊA£¬¶¼ÓÐg£¨x£©=f£¨x£©£¬Ôò³Æg£¨x£©º¯ÊýΪf£¨x£©ÔÚBÉϵÄÒ»¸öÑÓÍØº¯Êý£®Éèf£¨x£©=e-x£¨x-1£©£¨x£¾0£©£¬g£¨x£©Îªf£¨x£©ÔÚRÉϵÄÒ»¸öÑÓÍØº¯Êý£¬ÇÒg£¨x£©ÊÇÆæº¯Êý£®¸ø³öÒÔÏÂÃüÌ⣺¢Ùµ±x£¼0ʱ£¬g£¨x£©=e-x£¨1-x£©£»
¢Úº¯Êýg£¨x£©ÓÐ3¸öÁãµã£»
¢Ûg£¨x£©£¾0µÄ½â¼¯Îª£¨-1£¬0£©¡È£¨1£¬+¡Þ£©£»
¢Ü?x1£¬x2¡ÊR£¬¶¼ÓÐ$|g£¨{x_1}£©-g£¨{x_2}£©|¡Ü\frac{2}{e^2}$£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö Éèx£¼0£¬Ôò-x£¾0£¬Óɺ¯ÊýµÃÐÔÖʿɵýâÎöʽ£¬¿ÉÅТٵÄÕæ¼Ù£¬ÔÙÓÉÐÔÖÊ×÷³öͼÏó¿É¶ÔÆäËûÃüÌâ×÷³öÅжϣ®
½â´ð
½â£ºÓÉÌâÒâµÃ£¬x£¾0ʱ£¬g£¨x£©=f£¨x£©=e-x£¨x-1£©£¬
µ±x£¼0ʱ£¬Ôò-x£¾0£¬g£¨-x£©=f£¨-x£©=ex£¨-x-1£©=-g£¨x£©£¬ËùÒÔg£¨x£©=ex£¨x+1£©£¬¹Ê¢Ù²»ÕýÈ·£»
¶Ôx£¼0ʱµÄ½âÎöʽÇóµ¼Êý¿ÉµÃ£¬g¡ä£¨x£©=ex£¨x+2£©£¬ÁîÆäµÈÓÚ0£¬½âµÃx=-2£¬
ÇÒµ±x¡Ê£¨-¡Þ£¬-2£©Éϵ¼ÊýСÓÚ0£¬º¯Êýµ¥µ÷µÝ¼õ£»µ±x¡Ê£¨-2£¬+¡Þ£©Éϵ¼Êý´óÓÚ0£¬º¯Êýµ¥µ÷µÝÔö£¬
x=-2´¦Îª¼«Ð¡Öµµã£¬ÇÒg£¨-2£©£¾-1£¬ÇÒÔÚx=1´¦º¯ÊýֵΪ0£¬ÇÒµ±x£¼-1ÊǺ¯ÊýֵΪ¸º£®
ÓÖÒòÎªÆæº¯ÊýµÄͼÏó¹ØÓÚÔµãÖÐÐĶԳƣ¬¹Êº¯Êýf£¨x£©µÄͼÏóÓ¦ÈçͼËùʾ£º
ÓÉͼÏó¿ÉÖª£ºº¯Êýf£¨x£©ÓÐ3¸öÁãµã£¬¹Ê¢Ú¢ÛÕýÈ·£»
ÓÉÓÚº¯Êý-1£¼g£¨x£©£¼1£¬¹ÊÓжÔ?x1£¬x2¡ÊR£¬|g£¨x2£©-g£¨x1£©|£¼2ºã³ÉÁ¢£¬¼´¢Ü²»ÕýÈ·£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÊǸöж¨ÒåÌ⣬Ö÷Òª¿¼²éÀûÓú¯ÊýÆæÅ¼ÐÔÇóº¯Êý½âÎöʽµÄ·½·¨£¬ÔÚ½âÌâʱעÒâ¶ÔÓÚж¨ÒåµÄÀí½â£®×÷³öº¯ÊýµÄͼÏóÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮
| A£® | 1 | B£® | $1+\frac{1}{2}$ | ||
| C£® | $1+\frac{1}{2}+\frac{1}{3}$ | D£® | $1+\frac{1}{2}+\frac{1}{3}+¡+\frac{1}{{{2^{n_0}}-1}}$ |
| A£® | y=ln£¨x+1£© | B£® | y=$\frac{1}{2}$x2+cosx | C£® | y=x4-3x2 | D£® | y=3x+sinx |
| A£® | 337 | B£® | 338 | C£® | 1678 | D£® | 2012 |
| A£® | a£¾b£¾c | B£® | c£¾a£¾b | C£® | b£¾a£¾c | D£® | c£¾b£¾a |