题目内容
9.用数学归纳法证明不等式$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}<n(n∈{N^*},n≥2)$,在验证n=n0(n0为起始值)时,不等式左边为( )| A. | 1 | B. | $1+\frac{1}{2}$ | ||
| C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^{n_0}}-1}}$ |
分析 验证n=n0(n0为起始值)时,n=2,即可得到答案
解答 解:当n=2时,22-1=3,
当n=2时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$,
故选C.
点评 本题考查的知识点是数学归纳法的步骤,在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.解此类问题时,注意n的取值范围.
练习册系列答案
相关题目
13.
按如图程序框图运算:若运算进行3次才停止,则输入的x的取值范围是( )
| A. | (10,28] | B. | (10,28) | C. | [10,28) | D. | [10,28] |
20.为得到函数$y=cos(2x+\frac{π}{6})$的图象,只需将函数y=sin2x的图象( )
| A. | 向左平移$\frac{2π}{3}$个长度单位 | B. | 向左平移$\frac{π}{12}$个长度单位 | ||
| C. | 向左平移$\frac{π}{3}$个长度单位 | D. | 向右平移$\frac{π}{12}$个长度单位 |
4.中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2$\sqrt{13}$,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3:7,则双曲线方程为( )
| A. | $\frac{x^2}{9}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{9}=1$ | C. | $\frac{y^2}{9}-\frac{x^2}{4}=1$ | D. | $\frac{y^2}{4}-\frac{x^2}{9}=1$ |
1.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|\\ 2-lnx\end{array}\right.$$\begin{array}{l}0<x≤e\\ x>e\end{array}$,若正实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围为( )
| A. | (e,2e+e2) | B. | $(\frac{1}{e}+2e,2+{e^2})$ | C. | $(\frac{1}{e}+e,2+{e^2})$ | D. | $(\frac{1}{e}+e,2e+{e^2})$ |
19.已知角α的终边过点P(1,2),则tan($α-\frac{π}{4}$)=( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |