ÌâÄ¿ÄÚÈÝ

4£®ÎªÁ˲âÁ¿Á½É½¶¥M¡¢N¼äµÄ¾àÀ룬·É»úÑØË®Æ½·½ÏòÔÚA¡¢BÁ½µã½øÐвâÁ¿£®A¡¢B¡¢M¡¢NÔÚͬһ¸öǦ´¹Æ½ÃæÄÚ£¨ÈçʾÒâͼ£©£®·É»úÄܹ»²âÁ¿µÄÊý¾ÝÓи©½ÇºÍA¡¢B¼äµÄ¾àÀ룮ÏÖ²âµÃAB¼äµÄ¾àÀëΪd£¬Aµãµ½M¡¢NµãµÄ¸©½ÇΪ¦Á1¡¢¦Â1£»Bµãµ½M¡¢NµãµÄ¸©½ÇΪ¦Á2¡¢¦Â2£¬Ç뽫²âÁ¿ËùµÃµ½µÄÊý¾ÝÔÚͼÉϱê³ö£¬²¢ÓÃËù²âµÃµÄÊý¾Ý¡¢¹«Ê½ºÍ±ØÒªµÄÎÄ×Öд³öM¡¢N¼ä¾àÀëµÄ±í´ïʽ£®£¨ÓÃËù²âµÃµÄÊý¾Ýд³öMNµÄ±í´ïʽ£©£®

·ÖÎö ÔÚ¡÷ABMºÍ¡÷ABNÖÐÀûÓÃÕýÏÒ¶¨Àí¼ÆËãBM£¬BN£¬ÔÚ¡÷BMNÖÐÀûÓÃÓàÏÒ¶¨Àí¼ÆËãMN£®

½â´ð ½â£ºÓÉÌâÒâ¿ÉÖª¡ÏBAM=¦Á1£¬¡ÏABM=¦Á2£¬AB=d£¬
Ôò¡÷ABMÖУ¬¡ÏAMB=180¡ã-¦Á1-¦Á2£¬
ÓÉÕýÏÒ¶¨Àí¿ÉµÃ$\frac{AB}{sin¡ÏAMB}=\frac{BM}{sin¡ÏBAM}$£¬¼´$\frac{d}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©}$=$\frac{BM}{sin{¦Á}_{1}}$£¬
¡àBM=$\frac{dsin{¦Á}_{1}}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©}$£¬
ÔÚ¡÷ABNÖУ¬¡ÏANB=¦Â2-¦Â1£¬
ÓÉÕýÏÒ¶¨ÀíµÃ$\frac{BN}{sin¡ÏBAN}=\frac{AB}{sin¡ÏANB}$£¬¼´$\frac{d}{sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$=$\frac{BN}{sin{¦Â}_{1}}$£¬
¡àBN=$\frac{dsin{¦Â}_{1}}{sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$£¬
ÔÚ¡÷BMNÖУ¬¡ÏMBN=180¡ã-¦Á2-¦Â2£¬¡àcos¡ÏMBN=-cos£¨¦Á2+¦Â2£©£¬
ÓÉÓàÏÒ¶¨ÀíµÃMN2=BM2+BN2-2BM•BN•cos¡ÏMBN=$\frac{{d}^{2}si{n}^{2}{¦Á}_{1}}{si{n}^{2}£¨{¦Á}_{1}+{¦Á}_{2}£©}$+$\frac{{d}^{2}si{n}^{2}{¦Â}_{1}}{si{n}^{2}£¨{¦Â}_{2}-{¦Â}_{1}£©}$+$\frac{{2d}^{2}sin{¦Á}_{1}sin{¦Â}_{1}cos£¨{¦Á}_{2}+{¦Â}_{2}£©}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$£¬
¡àMN=d$\sqrt{\frac{si{n}^{2}{¦Á}_{1}}{si{n}^{2}£¨{¦Á}_{1}+{¦Á}_{2}£©}+\frac{si{n}^{2}{¦Â}_{1}}{si{n}^{2}£¨{¦Â}_{2}-{¦Â}_{1}£©}+\frac{2sin{¦Á}_{1}sin{¦Â}_{1}cos£¨{¦Á}_{2}+{¦Â}_{2}£©}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©sin£¨{¦Â}_{2}-{¦Â}_{1}£©}}$£¬

µãÆÀ ±¾Ì⿼²éÁËÕýÓàÏÒ¶¨ÀíÔÚ½âÈý½ÇÐÎÖеÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø