ÌâÄ¿ÄÚÈÝ
4£®·ÖÎö ÔÚ¡÷ABMºÍ¡÷ABNÖÐÀûÓÃÕýÏÒ¶¨Àí¼ÆËãBM£¬BN£¬ÔÚ¡÷BMNÖÐÀûÓÃÓàÏÒ¶¨Àí¼ÆËãMN£®
½â´ð
½â£ºÓÉÌâÒâ¿ÉÖª¡ÏBAM=¦Á1£¬¡ÏABM=¦Á2£¬AB=d£¬
Ôò¡÷ABMÖУ¬¡ÏAMB=180¡ã-¦Á1-¦Á2£¬
ÓÉÕýÏÒ¶¨Àí¿ÉµÃ$\frac{AB}{sin¡ÏAMB}=\frac{BM}{sin¡ÏBAM}$£¬¼´$\frac{d}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©}$=$\frac{BM}{sin{¦Á}_{1}}$£¬
¡àBM=$\frac{dsin{¦Á}_{1}}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©}$£¬
ÔÚ¡÷ABNÖУ¬¡ÏANB=¦Â2-¦Â1£¬
ÓÉÕýÏÒ¶¨ÀíµÃ$\frac{BN}{sin¡ÏBAN}=\frac{AB}{sin¡ÏANB}$£¬¼´$\frac{d}{sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$=$\frac{BN}{sin{¦Â}_{1}}$£¬
¡àBN=$\frac{dsin{¦Â}_{1}}{sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$£¬
ÔÚ¡÷BMNÖУ¬¡ÏMBN=180¡ã-¦Á2-¦Â2£¬¡àcos¡ÏMBN=-cos£¨¦Á2+¦Â2£©£¬
ÓÉÓàÏÒ¶¨ÀíµÃMN2=BM2+BN2-2BM•BN•cos¡ÏMBN=$\frac{{d}^{2}si{n}^{2}{¦Á}_{1}}{si{n}^{2}£¨{¦Á}_{1}+{¦Á}_{2}£©}$+$\frac{{d}^{2}si{n}^{2}{¦Â}_{1}}{si{n}^{2}£¨{¦Â}_{2}-{¦Â}_{1}£©}$+$\frac{{2d}^{2}sin{¦Á}_{1}sin{¦Â}_{1}cos£¨{¦Á}_{2}+{¦Â}_{2}£©}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©sin£¨{¦Â}_{2}-{¦Â}_{1}£©}$£¬
¡àMN=d$\sqrt{\frac{si{n}^{2}{¦Á}_{1}}{si{n}^{2}£¨{¦Á}_{1}+{¦Á}_{2}£©}+\frac{si{n}^{2}{¦Â}_{1}}{si{n}^{2}£¨{¦Â}_{2}-{¦Â}_{1}£©}+\frac{2sin{¦Á}_{1}sin{¦Â}_{1}cos£¨{¦Á}_{2}+{¦Â}_{2}£©}{sin£¨{¦Á}_{1}+{¦Á}_{2}£©sin£¨{¦Â}_{2}-{¦Â}_{1}£©}}$£¬
µãÆÀ ±¾Ì⿼²éÁËÕýÓàÏÒ¶¨ÀíÔÚ½âÈý½ÇÐÎÖеÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| A£® | 3125 | B£® | 5625 | C£® | 8125 | D£® | 0625 |
| A£® | 19 | B£® | 20 | C£® | 21 | D£® | 22 |
| A£® | £¨10£¬28] | B£® | £¨10£¬28£© | C£® | [10£¬28£© | D£® | [10£¬28] |
| A£® | 5¦Ð | B£® | $\sqrt{5}$¦Ð | C£® | $\frac{5¦Ð}{3}$ | D£® | $\frac{{5\sqrt{5}¦Ð}}{6}$ |
| A£® | P£¨3£©=3 | B£® | P£¨5£©=1 | C£® | P£¨2003£©£¾P£¨2005£© | D£® | P£¨2008£©£¼P£¨2010£© |
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | $\sqrt{3}$ | D£® | $\frac{{\sqrt{3}}}{3}$ |