题目内容

8.在直角坐标系中,定义两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|.
现有以下命题:
①若A,B是x轴上两点,则d(A,B)=|x1-x2|;
②已知点A(1,2),点B(cos2θ,sin2θ),则d(A,B)为定值;
③已知点A(2,1),点B在圆x2+y2=1上,则d(A,B)的取值范围是(3-$\sqrt{2}$,3+$\sqrt{2}$);
④若|AB|表示A,B两点间的距离,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命题的是①②④(写出所有真命题的序号)

分析 根据距离公式判断①④,根据三角函数的性质判断②③.

解答 解:①当A,B是x轴上两点时,y1=y2=0,d(A,B)=|x1-x2|显然成立,∴①对;
②由x∈[0,1]得,d(A,B)=|1-cos2θ|+|2-sin2θ|=1-cos2θ+2-sin2θ=2为定值,∴②对;
③由条件得$d(A,B)=|{2-cosθ}|+|{1-sinθ}|=3-\sqrt{2}sin(θ+\frac{π}{4})$,
∴$d(A,B)∈[{3-\sqrt{2},3+\sqrt{2}}]$,∴③不对;
④由条件知${|{AB}|^2}=({x_1}-{x_2}{)^2}+{({y_1}-{y_2})^2}≥\frac{1}{2}{(|{{x_1}-{x_2}}|+|{{y_1}-{y_2}}|)^2}$,
∴$|{AB}|=≥\frac{{\sqrt{2}}}{2}(|{{x_1}-{x_2}}|+|{{y_1}-{y_2}}|)=\frac{{\sqrt{2}}}{2}d(A,B)$,∴④对;
故答案为:①②④.

点评 本题考查了两点间距离公式的应用,考查三角函数问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网