题目内容
下列各式中与排列数A
相等的是( )
m n |
A、
| ||||
| B、n(n-1)(n-2)…(n-m) | ||||
C、
| ||||
D、A
|
考点:排列及排列数公式
专题:排列组合
分析:把所给的排列数展开,写成m个因式相乘的形式,再把选项中所给的式子变形,也写成因式的积的形式,得到结果,这是一个公式的应用.
解答:
解:∵排列数Anm=n(n-1)(n-2)…(n-m+1)
=nAn-1m-1=An1An-1m-1
故选:D.
=nAn-1m-1=An1An-1m-1
故选:D.
点评:本题是排列和组合数的运算,根据排列和组合的公式,写出算式,得到结果,这类问题有一大部分是考查排列和组合的性质的,本题是一个简单的运算.
练习册系列答案
相关题目
同时掷两个大小相同的硬币,出现一正一反的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
过双曲线
-
=1(a>0,b>0)的左焦点F(-c,0)作圆(x-c)2+y2=c2的切线,切点为E,且该切线与双曲线的右支交于点A.若
=
(
+
),则该双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| OE |
| 1 |
| 2 |
| OF |
| OA |
A、
| ||||
B、
| ||||
C、
| ||||
| D、2 |
若2弧度的圆心角所对的弧长为2cm,则这个圆心角所夹的扇形的面积是( )
| A、4 cm2 |
| B、2 cm2 |
| C、4π cm2 |
| D、1 cm2 |
20名学生,任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率是( )
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|
设集合A={x∈R|x+y=2},集合B={x∈R|x≤2},则A∩B=( )
| A、{2} | B、φ | C、A | D、B |
α,β,γ为不同的平面,m,n,l为不同的直线,则m⊥β的一个充分条件是( )
| A、n⊥α,n⊥β,m⊥α |
| B、α∩γ=m,α⊥γ,β⊥γ |
| C、α⊥γ,β⊥γ,m⊥α |
| D、α⊥β,α∩β=l,m⊥l |