题目内容

5.已知{an}为等差数列,3a4+a8=36,则{an}的前9项和S9=(  )
A.9B.17C.36D.81

分析 由等差数列性质得到a1+4d=a5=9,由此能求出{an}的前9项和.

解答 解:∵{an}为等差数列,3a4+a8=36,
∴3(a1+3d)+a1+7d=4a1+16d=36,
解得a1+4d=a5=9,
∴S9=$\frac{9}{2}$×(a1+a9)=9a5=9×9=81.
故选:D.

点评 本题考查等差数列的前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网