题目内容

9.已知tanα=$\frac{3}{4}$,$π<α<\frac{3π}{2}$,则sinα-cosα=$\frac{1}{5}$.

分析 根据同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sinα、cosα的值,可得sinα-cosα的值.

解答 解:∵tanα=$\frac{3}{4}$=$\frac{sinα}{cosα}$,$π<α<\frac{3π}{2}$,sin2α+cos2α=1,
∴sinα=-$\frac{3}{5}$,cosα=-$\frac{4}{5}$,∴sinα-cosα=$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网