ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÊýÁÐ{an}¡¢{bn}Âú×㣺an+1=an+1£¬bn+1=bn+$\frac{1}{2}{a}_{n}$£¬cn=${{a}_{n}}^{2}$-4bn£¬n¡ÊN*£º
£¨1£©Èôa1=1£¬b1=0£¬ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£º
£¨2£©Ö¤Ã÷£ºÊýÁÐ{cn}ÊǵȲîÊýÁУº
£¨3£©¶¨Òåfn£¨x£©=x2+anx+bn£¬Ö¤Ã÷£ºÈô´æÔÚK¡ÊN*£¬Ê¹µÃak¡¢bkΪÕûÊý£¬ÇÒfk£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£¬Ôò±ØÓÐÎÞÇî¶à¸öfn£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£º

·ÖÎö £¨1£©Í¨¹ýan+1=an+1¡¢a1=1¿ÉÖªÊýÁÐ{an}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ»Í¨¹ýbn+1-bn=$\frac{1}{2}$n£¬µ±n¡Ý2ʱÀûÓÃbn=£¨bn-bn-1£©+£¨bn-1-bn-2£©+¡­+£¨b2-b1£©+b1¼ÆË㣬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©´úÈë¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ý·ÖÎö¿ÉÖª·½³Ìx2+akx+bk=0ÓÐÁ½¸öÕûÊý¸ù£¬ÀûÓá÷=k£¾0£¬Ö»ÐèÁî$\frac{-{a}_{k}¡À\sqrt{¡÷}}{2}$=$\frac{-k¡À\sqrt{k}}{2}$ΪÕûÊý¼´¿É£®

½â´ð £¨1£©½â£º¡ßan+1=an+1£¬a1=1£¬
¡àÊýÁÐ{an}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬
¡àan=n£»
ÓÖ¡ßbn+1=bn+$\frac{1}{2}{a}_{n}$£¬
¡àbn+1-bn=$\frac{1}{2}$n£¬
ÓÖ¡ßb1=0£¬
¡àµ±n¡Ý2ʱ£¬bn=£¨bn-bn-1£©+£¨bn-1-bn-2£©+¡­+£¨b2-b1£©+b1
=$\frac{1}{2}$[£¨n-1£©+£¨n-2£©+¡­+1+0]
=$\frac{1}{2}$•$\frac{n£¨n-1£©}{2}$
=$\frac{n£¨n-1£©}{4}$£¬
ÓÖ¡ßµ±n=1ʱÉÏʽ³ÉÁ¢£¬
¡àbn=$\frac{n£¨n-1£©}{4}$£»
£¨2£©Ö¤Ã÷£º¡ßan=n£¬bn=$\frac{n£¨n-1£©}{4}$£¬
¡àcn=${{a}_{n}}^{2}$-4bn=n2-4•$\frac{n£¨n-1£©}{4}$=n£¬
¡àÊýÁÐ{cn}ÊǵȲîÊýÁУ»
£¨3£©Ö¤Ã÷£ºÒÀÌâÒ⣬·½³Ìx2+akx+bk=0ÓÐÁ½¸öÕûÊý¸ù£¬
Ôò¡÷=${{a}_{k}}^{2}$-4bk=k2-4•$\frac{k£¨k-1£©}{4}$=k£¾0£¬ÇÒ$\frac{-{a}_{k}¡À\sqrt{¡÷}}{2}$=$\frac{-k¡À\sqrt{k}}{2}$ΪÕûÊý£¬
ÓÖ¡ßak¡¢bkΪÕûÊý£¬
¡àk=4t£¨t¡ÊN*£©Âú×ãÌâÒ⣬
¡à±ØÓÐÎÞÇî¶à¸öfn£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²é²¢ÏîÏàÏû·¨µÄÄæÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø