题目内容
19.《九章算术•衰分》是我国古代内容极为丰富的数学名著,书中有如下问题:今有禀栗,大夫、不更、簪裹、上造、公士、凡五人,一十五斗,今有大夫一人后来,亦当禀五斗,仓无栗,欲以衰出之,问各几何?
现解决如下问题:原有大夫、不更、簪裹、上造、公士5种爵位各1人,现增加一名大夫,共计6人,按照爵位共献出5斗栗,其中5种爵位的人所献“禀栗”成等差数列{an},其公差d满足d=-a5,请问6人中爵位为“簪裹”的人需献出栗的数量是( )
| A. | $\frac{3}{4}$斗 | B. | $\frac{4}{5}$斗 | C. | 1斗 | D. | $\frac{5}{4}$斗 |
分析 利用率等差数列的通项公式列出方程组,求出首项和公差,由此能求出结果.
解答 解:由题意得:
$\left\{\begin{array}{l}{2{a}_{1}+{a}_{1}-{a}_{5}+{a}_{1}-2{a}_{5}+{a}_{1}-3{a}_{5}+{a}_{1}-4{a}_{5}=5}\\{{a}_{1}=-({a}_{1}+4d)}\end{array}\right.$,
解得${a}_{1}=\frac{5}{4},d=-\frac{1}{4}$,
∴6人中爵位为“簪裹”的人需献出栗的数量是a3=a1+2d=$\frac{5}{4}-\frac{2}{4}$=$\frac{3}{4}$(斗).
故选:A.
点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.
练习册系列答案
相关题目
7.
如图是求样本x1、x2、…x10平均数$\overline{x}$的程序框图,图中空白框中应填入的内容为( )
| A. | S=S+xn | B. | S=S+$\frac{{x}_{n}}{n}$ | C. | S=S+n | D. | S=S+$\frac{{x}_{n}}{10}$ |
14.某人的身份证号码是340304199803041290,随机掷一枚骰子,出现的点数是身份证上的数字的概率为( )
| A. | $\frac{2}{9}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{6}$ |
11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.
若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为( )
| 甲产品所需工时 | 乙产品所需工时 | |
| A设备 | 2 | 3 |
| B设备 | 4 | 1 |
| A. | 40万元 | B. | 45万元 | C. | 50万元 | D. | 55万元 |
8.
刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的,如图是一个阳马的三视图,则其表面积为( )
| A. | 2 | B. | 2+$\sqrt{2}$ | C. | 3+$\sqrt{3}$ | D. | 3+$\sqrt{2}$ |