ÌâÄ¿ÄÚÈÝ
17£®ÒªµÃµ½º¯Êýy=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$µÄͼÏó£¬Ö»Ð轫y=sinxͼÏóÉÏËùÓеĵ㣨¡¡¡¡£©| A£® | ºá×ø±ê±äΪÔÀ´µÄÒ»°ë£¬×Ý×ø±ê²»±ä£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | |
| B£® | ºá×ø±ê±äΪÔÀ´µÄÁ½±¶£¬×Ý×ø±ê²»±ä£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | |
| C£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬ÔÙ½«ËùµÃ¸÷µãµÄºá×ø±ê±äΪÔÀ´µÄÁ½±¶£¬×Ý×ø±ê²»±ä | |
| D£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙ½«ËùµÃ¸÷µãµÄºá×ø±ê±äΪÔÀ´µÄÒ»°ë£¬×Ý×ø±ê²»±ä |
·ÖÎö ÀûÓÃÈý½ÇºãµÈ±ä»»»¯¼òÔº¯ÊýµÄ½âÎöʽ£¬ÔÙÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÇóµÃÆ½ÒÆºóËùµÃº¯ÊýµÄ½âÎöʽ£®
½â´ð ½â£º¡ßº¯Êýy=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin£¨2x+$\frac{¦Ð}{6}$£©£¬
¹ÊÖ»Ð轫y=sinxͼÏóÉÏËùÓеĵãÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬¿ÉµÃy=sin£¨x+$\frac{¦Ð}{6}$£©µÄͼÏó£»
ÔÙ½«ËùµÃ¸÷µãµÄºá×ø±ê±äΪÔÀ´µÄÒ»°ë£¬×Ý×ø±ê²»±ä£¬¿ÉµÃy=sin£¨2x+$\frac{¦Ð}{6}$£© µÄͼÏó£¬
¹ÊÑ¡£ºD£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½ÇºãµÈ±ä»»£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®
ÈçͼËùʾÊÇÑØÔ²×¶µÄÁ½ÌõĸÏß½«Ô²×¶Ï÷È¥Ò»²¿·ÖºóµÃ¼¸ºÎÌåµÄÈýÊÓͼ£¬ÆäÌå»ýΪ$\frac{16¦Ð}{9}+\frac{2\sqrt{3}}{3}$£¬ÔòÔ²×¶µÄĸÏß³¤Îª£¨¡¡¡¡£©
| A£® | 2$\sqrt{2}$ | B£® | 2$\sqrt{3}$ | C£® | 4 | D£® | $\sqrt{2}+\sqrt{3}$ |
5£®¼¯ºÏA={x|2x2-3x¡Ü0£¬x¡ÊZ}£¬B={x|1¡Ü2x£¼32£¬x¡ÊZ}£¬¼¯ºÏCÂú×ãA⊆C?B£¬ÔòCµÄ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 3 | B£® | 4 | C£® | 7 | D£® | 8 |
12£®Éèa£¬b¡ÊR£¬Ôò¡°$\frac{{a}^{2}}{a-b}$£¼0¡±ÊÇ¡°a£¼b¡±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
| A£® | ³ä·Ö¶ø²»±ØÒª | B£® | ±ØÒª¶ø²»³ä·Ö | ||
| C£® | ³äÒª | D£® | ¼È²»³ä·ÖÒ²²»±ØÒª |
2£®ÔÚÏÂÁи÷ͼÖУ¬Ïà¹Ø¹ØÏµ×îÇ¿µÄÊÇ£¨¡¡¡¡£©
| A£® | B£® | C£® | D£® |
14£®Èôa£¼b£¼0£¬ÔòÏÂÁв»µÈÖв»³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | |a|£¾|b| | B£® | $\frac{1}{a+b}£¾\frac{1}{a}$ | C£® | $\frac{1}{b}£¾\frac{1}{a}$ | D£® | a2£¾b2 |