题目内容

若点F为抛物线y2=4x的焦点,A,B,C为抛物线上三点,O为坐标原点,若F是△ABC的重心,△OFA,△OFB,△OFC的面积分别为S1,S2,S3,则S12+S22+S32=
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:确定抛物线y2=4x的焦点F的坐标,求出S12+S22+S32,利用点F是△ABC的重心,即可求得结论.
解答: 解:设A、B、C三点的坐标分别为(x1,y1),(x2,y2),(x3,y3),则
∵抛物线y2=4x的焦点F的坐标为(1,0),
∴S1=
1
2
|y1|,S2=
1
2
|y2|,S3=
1
2
|y3|,
∴S12+S22+S32=
1
4
(y12+y22+y32)=x1+x2+x3
∵点F是△ABC的重心,
∴x1+x2+x3=3,
∴S12+S22+S32=3,
故答案为:3
点评:本题考查抛物线的定义,考查三角形重心的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网