题目内容
用数学归纳法证明“对于足够大的自然数n,总有2n>n2”时,验证第一步不等式成立所取的第一个值n0最小应当是 .
考点:数学归纳法
专题:计算题,点列、递归数列与数学归纳法
分析:根据数学归纳法的步骤,结合本题的题意,是要验证n=1,2,3,4,5时,命题是否成立;可得答案.
解答:
解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;
结合本题,要验证n=1时,左=21=2,右=12=1,2n>n2不成立,
n=2时,左=22=4,右=22=4,2n>n2不成立,
n=3时,左=23=8,右=32=9,2n>n2不成立,
n=4时,左=24=16,右=42=16,2n>n2不成立,
n=5时,左=25=32,右=52=25,2n>n2成立,
因为n>5成立,所以2n>n2恒成立.
故答案为:5
结合本题,要验证n=1时,左=21=2,右=12=1,2n>n2不成立,
n=2时,左=22=4,右=22=4,2n>n2不成立,
n=3时,左=23=8,右=32=9,2n>n2不成立,
n=4时,左=24=16,右=42=16,2n>n2不成立,
n=5时,左=25=32,右=52=25,2n>n2成立,
因为n>5成立,所以2n>n2恒成立.
故答案为:5
点评:本题考查数学归纳法的运用,解此类问题时,注意n的取值范围.
练习册系列答案
相关题目
若(1-2x)10=a0+a1x+…+a10x10,则a0+a1+…+a10=( )
| A、1 |
| B、310 |
| C、-1 |
| D、-310 |