ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨1£¬0£©£¬\overrightarrow b=£¨0£¬1£©£¬\overrightarrow c=\overrightarrow a+¦Ë\overrightarrow b£¨¦Ë¡ÊR£©$£¬ÏòÁ¿$\overrightarrow d$Èçͼ±íʾ£¬Ôò£¨¡¡¡¡£©| A£® | ?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c¡Í\overrightarrow d$ | B£® | ?¦Ë£¾0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=60¡ã | ||
| C£® | ?¦Ë£¼0£¬Ê¹µÃ£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=30¡ã | D£® | ?¦Ë£¾0£¬Ê¹µÃ$\overrightarrow c=m\overrightarrow d£¨m$Ϊ²»Îª0µÄ³£Êý£© |
·ÖÎö ÓÉÌâÒâ¿ÉµÃÏòÁ¿$\overrightarrow{c}=\overrightarrow{a}+¦Ë\overrightarrow{b}=£¨1£¬¦Ë£©$£¬ÏòÓÉͼ¿ÉµÃ$\overrightarrow{d}$=£¨5£¬5£©-£¨1£¬2£©=£¨4£¬3£©£®ÔÙ¶ÔÑ¡ÏîÖðÒ»Åж¨¼´¿É£®
½â´ð ½â£ºÏòÁ¿$\overrightarrow{c}=\overrightarrow{a}+¦Ë\overrightarrow{b}=£¨1£¬¦Ë£©$£¬ÏòÓÉͼ¿ÉµÃ$\overrightarrow{d}$=£¨5£¬5£©-£¨1£¬2£©=£¨4£¬3£©£®
¶ÔÓÚA£¬Èô$\overrightarrow c¡Í\overrightarrow d$£¬Ôò£¨1£¬¦Ë£©•£¨4£¬3£©=0£¬½âµÃ$¦Ë=-\frac{4}{3}£¼0$£¬¹Ê´í£»
¶ÔÓÚB£¬Èô£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=60¡ã£¬Ôò$\frac{4+3¦Ë}{5\sqrt{1+{¦Ë}^{2}}}=\frac{1}{2}$£¬µÃ11¦Ë2+96¦Ë+39=0£¬·½³ÌÎ޽⣬¹Ê´í£»
¶ÔÓÚC£¬Èô£¼$\overrightarrow{c}$£¬$\overrightarrow{d}$£¾=30¡ã£¬Ôò$\frac{4+3¦Ë}{5\sqrt{1+{¦Ë}^{2}}}=\frac{\sqrt{3}}{2}$£¬µÃ39¦Ë2-96¦Ë+11=0£¬·½³ÌÎ޽⣬¹Ê´í£»
¶ÔÓÚD£¬Èô$\overrightarrow c=m\overrightarrow d£¨m$Ϊ²»Îª0µÄ³£Êý£©£¬Ôò£¨1£¬¦Ë£©=c£¨4£¬3£©£¬½âµÃ¦Ë=$\frac{3}{4}£¾0$£¬¹ÊÕýÈ·£»
¹ÊÑ¡£ºD
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄ×ø±êÔËËãÐÔÖÊ¡¢ÏòÁ¿¹²Ïß¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | $\frac{{\sqrt{3}}}{2}$ | B£® | $\sqrt{3}$ | C£® | $-\frac{{\sqrt{3}}}{2}$ | D£® | 0 |
| A£® | x1+x2-1£¾0 | B£® | x1+x2-1£¼0 | C£® | x2-x1£¾0 | D£® | x2-x1£¼0 |
| A£® | £¨0£¬1£© | B£® | £¨-¡Þ£¬1£© | C£® | £¨0£¬+¡Þ£© | D£® | $£¨-¡Þ£¬\frac{1}{2}£©$ |
| A£® | 1 | B£® | 2 | C£® | 4 | D£® | 12 |