题目内容
7.将函数f(x)=cos2ωx的图象向右平移$\frac{3π}{4ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上为减函数,则正实数ω的最大值为( )| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 3 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用诱导公式,正弦函数的单调性,求得实数ω的最大值.
解答 解:将函数f(x)=cos2ωx的图象向右平移$\frac{3π}{4ω}$个单位,得到函数y=g(x)=cos2ω(x-$\frac{3π}{4ω}$)=cos(2ωx-$\frac{3π}{2}$)=-sin2ωx的图象,
若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上为减函数,则sin2ωx在$[-\frac{π}{4},\frac{π}{6}]$上为增函数,
∴2ω•(-$\frac{π}{4}$)≥-$\frac{π}{2}$,且2ω•$\frac{π}{6}$≤$\frac{π}{2}$,求得ω≤1,
故正实数ω的最大值为1,
故选:B
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,诱导公式,正弦函数的单调性,属于基础题.
练习册系列答案
相关题目
17.若幂函数f(x)=xα经过点$(2,\sqrt{2})$,则f(x)是( )
| A. | 偶函数,且在(0,+∞)上是增函数 | |
| B. | 偶函数,且在(0,+∞)上是减函数 | |
| C. | 奇函数,且在(0,+∞)是减函数 | |
| D. | 非奇非偶函数,且在(0,+∞)上是增函数 |
2.已知变量x,y成负相关,且由观测数据算得样本平均数$\overline x=3$,$\overline y=3.5$,则由该观测数据算得的线性回归方程可能是( )
| A. | y=0.4x+2.3 | B. | y=2x+2.4 | C. | y=-2x+9.5 | D. | y=-0.4x+4.4 |
12.传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:
根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.
| 成绩 | 人数 |
| A | 9 |
| B | 12 |
| C | 31 |
| D | 22 |
| E | 6 |
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.
19.已知O,F分别为双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的中心和右焦点,点G,M分别在E的渐近线和右支,FG⊥OG,GM∥x轴,且|OM|=|OF|,则E的离心率为( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | $\sqrt{2}$ |
16.曲线y=2x2-x在点(0,0)处的切线方程为( )
| A. | x+y=0 | B. | x-y=0 | C. | x-y+2=0 | D. | x+y+2=0 |
17.若函数y=3sin(2x+φ)(-π<φ<0)的图象向左平移$\frac{π}{6}$后得到的图象关于y轴对称,|φ|=( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |