题目内容

18.已知函数f(x)=cosx,a,b,c分别为△ABC的内角A,B,C所对的边,且3a2+3b2-c2=4ab,则下列不等式一定成立的是(  )
A.f(sinA)≤f(cosB)B.f(sinA)≤f(sinB)C.f(cosA)≤f(sinB)D.f(cosA)≤f(cosB)

分析 首先根据关系式变换出a2+b2≤c2得到A+B≤$\frac{π}{2}$,即而得到0<sinB≤sin($\frac{π}{2}$-A)<1,利用函数f(x)=cosx的单调性求解.

解答 解:由3a2+3b2-c2=4ab可得:(a2+b2-c2)=-2(a-b)2≤0,
所以:a2+b2≤c2,A+B≤$\frac{π}{2}$,
0<B≤$\frac{π}{2}$-A<$\frac{π}{2}$
所以:0<sinB≤sin($\frac{π}{2}$-A)<1,
0<sinB≤cosA<1,
所以:f(sinB)≥f(cosA)
故选:C.

点评 本题考查了三角关系式的恒等变换,三角形形状的判断,三角函数关系是的应用,及单调性的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网