题目内容

7.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是(  )
A.(-∞,$\frac{3}{2}$)B.[$\frac{3}{2}$,+∞)C.($\frac{3}{2}$,+∞)D.(-$\frac{3}{2}$,$\frac{3}{2}$)

分析 求出函数的导函数,由函数f(x)=-x3+2ax在(0,1]上单调递增,所以f′(x)=-3x2+2a≥0在(0,1]上恒成立,分离变量后利用函数的单调性求实数a的范围.

解答 解:由f(x)=-x3+2ax,所以f′(x)=-3x2+2a,
因为f(x)=-x3+2ax在(0,1]上是单调递增函数,
所以f′(x)=-3x2+2a≥0在(0,1]上恒成立.
即2a≥3x2,在(0,1]上恒成立.
因为函数y=3x2≤3在(0,1]上恒成立,
所以a≥$\frac{3}{2}$.
故选:B.

点评 本题考查了函数的单调性与函数的导函数的关系,训练了利用分离变量法求参数的范围,考查了利用函数的单调性求函数的最值,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网