题目内容

3.已知θ为第一象限的角,sinθ-2cosθ=-$\frac{2}{5}$,则sinθ+cosθ等于(  )
A.$\frac{9}{5}$B.$\frac{8}{5}$C.$\frac{7}{5}$D.$\frac{6}{5}$

分析 由已知等式移项,平方,整理可得5cos2θ-$\frac{8}{5}$cosθ-$\frac{21}{25}$=0,结合θ为第一象限的角,即可求cosθ的值,由同角三角函数基本关系式即可求sinθ的值,即可得解sinθ+cosθ的值.

解答 解:∵sinθ-2cosθ=-$\frac{2}{5}$,则(2cosθ-$\frac{2}{5}$)2+cos2θ=1,
∴5cos2θ-$\frac{8}{5}$cosθ-$\frac{21}{25}$=0,即(cosθ-$\frac{3}{5}$)(5cosθ+$\frac{7}{5}$)=0,
又∵θ为第一象限的角,
∴cosθ=$\frac{3}{5}$,sinθ=$\frac{4}{5}$,从而sinθ+cosθ=$\frac{7}{5}$.
故选:C.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网