ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
£¨1£©ÇóC1£¬C2µÄ·½³Ì£»
£¨2£©ÉèC2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔµãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA£¬B£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓëD£¬E£®
£¨i£©Ö¤Ã÷£ºMA¡ÍMB£»
£¨ii£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃ
| S1 |
| S2 |
| 17 |
| 32 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÌâÒâÖªe=
=
£¬2
=a£¬ÓÉ´ËÄÜÇó³öC1£¬C2µÄ·½³Ì£®
£¨2£©£¨i£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£®ÓÉ
µÃx2-kx-1=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷MA¡ÍMB£®
£¨ii£©ÉèÖ±ÏßµÄбÂÊΪk1£¬ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬ÓÉ
£¬µÃµãA(k1£¬k12-1)£¬ÓÉʱB(-
£¬
-1)£®ÓÚÊÇS1=
|MA|•|MB|=
•|k1|•
•|-
|=
£¬Í¬ÀíS2=
|MD|•|ME|=
£¬ÓÉÌâÒâÖª£¬
(4k12+
+17)=
£¬ÓÉ´ËÇó³öÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³Ì·Ö±ðΪy=
xºÍy=-
x£®
| c |
| a |
| ||
| 2 |
| b |
£¨2£©£¨i£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£®ÓÉ
|
£¨ii£©ÉèÖ±ÏßµÄбÂÊΪk1£¬ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬ÓÉ
|
| 1 |
| k1 |
| 1 |
| k12 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1+k12 |
1+
|
| 1 |
| k1 |
| 1+k12 |
| 2|k1| |
| 1 |
| 2 |
| 32(1+k12)•|k1| |
| (1+4k12)(4+k12) |
| 1 |
| 64 |
| 1 |
| k12 |
| 17 |
| 32 |
| 3 |
| 2 |
| 3 |
| 2 |
½â´ð£º
£¨1£©½â£ºÓÉÌâÒâÖªe=
=
£¬
´Ó¶øa=2b£¬ÓÖ2
=a£¬½âµÃa=2£¬b=1£®
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
+y2=1£¬y=x2-1£®£¨4·Ö£©
£¨2£©£¨i£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬
ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£®
ÓÉ
µÃx2-kx-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬£¨5·Ö£©
ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
¡àkMA•kMB=
•
=
=
=
=-1£¬£¨7·Ö£©
¹ÊMA¡ÍMB£¬µÃÖ¤£®
£¨ii£©½â£ºÉèÖ±ÏßµÄбÂÊΪk1£¬
ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬
ÓÉ
£¬½âµÃ
»ò
£¬
ÔòµãAµÄ×ø±êΪ(k1£¬k12-1)
ÓÖÖ±ÏßMBµÄбÂÊΪ-
£¬
ͬÀí¿ÉµÃµãBµÄ×ø±êΪ(-
£¬
-1)£®
ÓÚÊÇS1=
|MA|•|MB|=
•|k1|•
•|-
|=
£®£¨8·Ö£©
ÓÉ
£¬µÃ(1+4k12)x2-8k1x=0£¬
½âµÃ
»ò
£¬
ÔòµãDµÄ×ø±êΪ(
£¬
)£¬
ÓÖÖ±ÏßµÄбÂÊΪ-
£¬Í¬Àí¿ÉµÃµãEµÄ×ø±ê(
£¬
)£¬
ÓÚÊÇS2=
|MD|•|ME|=
£¬£¨10·Ö£©
Òò´Ë
=
(4k12+
+17)£¬£¨12·Ö£©
ÓÉÌâÒâÖª£¬
(4k12+
+17)=
£¬
½âµÃk12=4£¬»òk12=
£®£¨12·Ö£©
ÓÖÓɵãA£¬BµÄ×ø±ê¿ÉÖª£¬k=
=k1-
£¬¡àk=¡À
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬
Æä·½³Ì·Ö±ðΪy=
xºÍy=-
x£®£¨13·Ö£©
| c |
| a |
| ||
| 2 |
´Ó¶øa=2b£¬ÓÖ2
| b |
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
| x2 |
| 4 |
£¨2£©£¨i£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬
ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£®
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬£¨5·Ö£©
ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
¡àkMA•kMB=
| y1+1 |
| x1 |
| y2+1 |
| x2 |
| (kx1+1)(kx2+1) |
| x1x2 |
=
| k2x1x2+k(x1+x2)+1 |
| x1x2 |
| -k2+k2+1 |
| -1 |
¹ÊMA¡ÍMB£¬µÃÖ¤£®
£¨ii£©½â£ºÉèÖ±ÏßµÄбÂÊΪk1£¬
ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬
ÓÉ
|
|
|
ÔòµãAµÄ×ø±êΪ(k1£¬k12-1)
ÓÖÖ±ÏßMBµÄбÂÊΪ-
| 1 |
| k1 |
ͬÀí¿ÉµÃµãBµÄ×ø±êΪ(-
| 1 |
| k1 |
| 1 |
| k12 |
ÓÚÊÇS1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1+k12 |
1+
|
| 1 |
| k1 |
| 1+k12 |
| 2|k1| |
ÓÉ
|
½âµÃ
|
|
ÔòµãDµÄ×ø±êΪ(
| 8k1 |
| 1+4k12 |
| 4k12-1 |
| 1+4k12 |
ÓÖÖ±ÏßµÄбÂÊΪ-
| 1 |
| k1 |
| -8k1 |
| 4+k12 |
| 4-k12 |
| 4+k12 |
ÓÚÊÇS2=
| 1 |
| 2 |
| 32(1+k12)•|k1| |
| (1+4k12)(4+k12) |
Òò´Ë
| S1 |
| S2 |
| 1 |
| 64 |
| 1 |
| k12 |
ÓÉÌâÒâÖª£¬
| 1 |
| 64 |
| 1 |
| k12 |
| 17 |
| 32 |
½âµÃk12=4£¬»òk12=
| 1 |
| 4 |
ÓÖÓɵãA£¬BµÄ×ø±ê¿ÉÖª£¬k=
k12-
| ||
k1+
|
| 1 |
| k1 |
| 3 |
| 2 |
¹ÊÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬
Æä·½³Ì·Ö±ðΪy=
| 3 |
| 2 |
| 3 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌºÍÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÖ±Ïß·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿