题目内容
9.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为4$\sqrt{2}$.分析 设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2-8my-8=0,|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$,利用基本不等式即可得出结论.
解答
解:设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2-8my-8=0,
设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=-8,
∴|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$≥4$\sqrt{2}$,当且仅当y2=4$\sqrt{2}$时,取等号,即|EG|的最小值为4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.
点评 本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
19.甲、乙、丙3位志愿者安排在周一至周六的六天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排放法共有( )
| A. | 20种 | B. | 30种 | C. | 40种 | D. | 60种 |
20.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F2作直线A,B交双曲线右支于A,B两点,若|AF1|+|BF1|的最小值为11a,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
4.已知集合A={x|y=lg(x+1)},B={-2,-1,0,1},则(∁RA)∩B=( )
| A. | {-2,-1} | B. | {-2} | C. | {-1,0,1} | D. | {0,1} |
1.在平面直角坐标系xOy中,以(-2,0)为圆心且与直线(3m+1)x+(1-2m)y-5=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是( )
| A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
18.已知实数x,y满足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目标函数Z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围是( )
| A. | {a|-1≤a≤1} | B. | {a|a≤-1} | C. | {a|a≤-1或a≥1} | D. | {a|a≥1} |