题目内容
13.(1)求乙学生的平均成绩及方差;
(2)从甲学生的10次模拟考试成绩中随机选取3个,记成绩为优秀等次的个数为X,求X的分布列和数学期望.
分析 (1)由茎叶图能求出乙学生的平均成绩和方差.
(2)X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.
解答 解:(1)由茎叶图得乙学生的平均成绩为:
$\overline{x}$=$\frac{1}{10}$(61+69+74+75+78+89+86+89+94)=80,
方差为:
S2=$\frac{1}{10}$[(-19)2+(-11)2+(-6)2+(-5)2+(-2)2+92+62+52+92+142]=96.6.
(2)X的可能取值为:
P(X=0)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
∴X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{12}$ | $\frac{5}{12}$ | $\frac{5}{12}$ | $\frac{1}{12}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,涉及到平均数、方差、离散型随机变量的分布列及数学期望等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是中档题.
练习册系列答案
相关题目
1.已知函数f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0,且a≠1).若它们的图象上存在关于y轴对称的点至少有3对,则实数a的取值范围是( )
| A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | (-∞,-1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
2.等差数列{an}的公差d<0,且a${\;}_{1}^{2}$=a${\;}_{17}^{2}$,则数列{an}的前n项和Sn取得最大时的项数n是( )
| A. | 8或9 | B. | 9或10 | C. | 10或11 | D. | 11或12 |