题目内容
2.${∫}_{0}^{\frac{π}{3}}$(1-2sin2$\frac{θ}{2}$)dθ=$\frac{\sqrt{3}}{2}$.分析 先根据二倍角公式化简,再根据的定积分的计算法则计算即可.
解答 解:${∫}_{0}^{\frac{π}{3}}$(1-2sin2$\frac{θ}{2}$)dθ=${∫}_{0}^{\frac{π}{3}}$cosθdθ=sinθ|${\;}_{0}^{\frac{π}{3}}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$
点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.
练习册系列答案
相关题目
13.已知x>0,y>0,xy-x-2y+$\frac{3}{2}$=0,则x+2y的取值范围是( )
| A. | (0,2]∪[6,+∞) | B. | (0,$\frac{3}{2}$]∪[6,+∞) | C. | ($\frac{3}{2}$,2]∪[6,+∞) | D. | [6,+∞) |
7.函数f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0对x∈[0,1]恒成立,则实数a的范围是( )
| A. | (-∞,2] | B. | (-∞,e] | C. | (-∞,ln2] | D. | [0,$\frac{1}{2}$) |
14.已知两个不共线的向量$\overrightarrow{OA}$和$\overrightarrow{OC}$,向量$\overrightarrow{OB}$与$\overrightarrow{OA}$关于向量$\overrightarrow{OC}$对称,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{b}$用$\overrightarrow{a}$和$\overrightarrow{c}$表示为( )
| A. | 2($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow{c}$-$\overrightarrow{a}$ | B. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}•\overrightarrow{c}-\overrightarrow{a}$ | C. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}-\overrightarrow{a}$ | D. | $\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}{|}^{2}}•\overrightarrow{c}-\overrightarrow{a}$ |
14.函数y=ln(-x2-2x+8)的单调递减区间是( )
| A. | (-∞,-1) | B. | (-1,2) | C. | (-4,-1) | D. | (-1,+∞) |