题目内容
16.在△ABC中,内角A,B,C的对边分别是a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,a=5,试求sinAsinC的值.
分析 (Ⅰ)由条件利用两角和差的三角公式sinA(sinB-$\sqrt{3}$cosB)=0,即sinB-$\sqrt{3}$cosB=0,即tanB=$\sqrt{3}$,从而求得∠B的值.
(Ⅱ)由三角形面积公式可求c,利用余弦定理可求b,由正弦定理解得sinA,sinC的值,即可得解.
解答 解:(Ⅰ)∵cosC+(cosA-$\sqrt{3}$sinA)cosB=-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,
整理得:sinAsinB-cosAcosB+cosAcosB-$\sqrt{3}$sinAcosB=0,即sinA(sinB-$\sqrt{3}$cosB)=0,
∵∠A为三角形内角,∴sinB-$\sqrt{3}$cosB=0,即tanB=$\sqrt{3}$,
∴∠B=$\frac{π}{3}$.
(Ⅱ)∵a=5,S=5$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$×5×c,解得:c=4.
∴由余弦定理可得:b2=a2+c2-2accosB=25+16-20=21,解得:b=$\sqrt{21}$,
∴由正弦定理$\frac{5}{sinA}=\frac{\sqrt{21}}{\frac{\sqrt{3}}{2}}=\frac{4}{sinC}$,可得:sinAsinC=$\frac{5×\frac{\sqrt{3}}{2}}{\sqrt{21}}×$$\frac{4×\frac{\sqrt{3}}{2}}{\sqrt{21}}$=$\frac{15}{21}$.
点评 此题考查了正弦定理、余弦定理、两角和差的三角函数公式的应用,考查了计算能力和转化思想,属于中档题.
| A. | e1e2=1 | B. | e1e2=2 | C. | e1+e2=2 | D. | $\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2 |
| A. | $\overrightarrow{AB}•\overrightarrow{{C_1}A}={a^2}$ | B. | $\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}=\sqrt{2}{a^2}$ | C. | $\overrightarrow{BC}•\overrightarrow{{A_1}D}={a^2}$ | D. | $\overrightarrow{AB}•\overrightarrow{{C_1}{A_1}}={a^2}$ |