题目内容
下列各数中最小的一个是( )
| A、111011<2> |
| B、210<6> |
| C、1000<4> |
| D、81<9> |
考点:进位制
专题:算法和程序框图
分析:欲找四个中最小的数,先将它们分别化成十进制数,后再比较它们的大小即可.
解答:
解:111011(2)=25+24+23+21+20=59.
210(6)=2×62+1×6=78;
1000(4)=1×43=64;
81(9)=8×9+1=73;
故111011(2)最小,
故选:A
210(6)=2×62+1×6=78;
1000(4)=1×43=64;
81(9)=8×9+1=73;
故111011(2)最小,
故选:A
点评:本题考查的知识点是算法的概念,由n进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.
练习册系列答案
相关题目
|
|=|
|=4,<
,
>=60°,则|
-
|=( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、4 | B、8 | C、37 | D、13 |
某单位为鼓励职工节约用水,作出了如下规定:每月用水不超过10m3,按每立方米x元收取水费;每月用水超过10m3,超过部分加倍收费,某职工某月缴费16x元,则该职工这个月实际用水为( )
| A、13m3 |
| B、14m3 |
| C、18m3 |
| D、26m3 |
若直线ax+by+c=0经过一、二、四象限,则有( )
| A、ac>0,bc>0 |
| B、ac>0,bc<0 |
| C、ac<0,bc>0 |
| D、ac<0,bc<0 |
设a,b∈R,则“a>b”是“3a>2b”( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
A、
| ||||
B、
| ||||
C、2
| ||||
D、
|
设i为虚数单位,则满足条件(2+i)z=(1+i)2的复数z的共轭复数是( )
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|
有以下四个命题,其中真命题为( )
| A、原点与点(2,3)在直线2x+y+3=0异侧 |
| B、点(2,3)与点(3,2)在直线x-y=0的同侧 |
| C、原点与点(2,1)在直线y-3x+2=0的异侧 |
| D、原点与点(2,1)在直线y-3x+2=0的同侧 |