题目内容
5.已知|$\overrightarrow{a}$|=7,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=9,求|$\overrightarrow{a}-\overrightarrow{b}$|分析 把|$\overrightarrow{a}$+$\overrightarrow{b}$|=2两边平方可得$\overrightarrow{a}$•$\overrightarrow{b}$的值,而|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$,代入计算即可.
解答 解:${(\overrightarrow{a}+\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=49+2$\overrightarrow{a}$•$\overrightarrow{b}$+16=81,解得:$\overrightarrow{a}$•$\overrightarrow{b}$=8,
∴${(\overrightarrow{a}-\overrightarrow{b})}^{2}$═${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=49-2$\overrightarrow{a}$•$\overrightarrow{b}$+16=49-16+16=49,
∴|$\overrightarrow{a}-\overrightarrow{b}$|=7.
点评 本题考查向量的模的求解,涉及向量数量积的运算,属基础题.
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |