题目内容
过点 (2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在直线的方程是( )
| A、3x-y-5=0 |
| B、3x+y-7=0 |
| C、x+3y-5=0 |
| D、x-3y+1=0 |
考点:直线与圆相交的性质
专题:计算题,直线与圆
分析:确定圆心坐标,可得过(2,1)的直径的斜率,即可求出被圆x2+y2-2x+4y=0截得的最长弦所在直线的方程.
解答:
解:xx2+y2-2x+4y=0的圆心坐标为(1,-2)
故过(2,1)的直径的斜率为k=3,
因此被圆x2+y2-2x+4y=0截得的最长弦所在直线的方程是y-1=3(x-2),即为3x-y-5=0.
故选:A.
故过(2,1)的直径的斜率为k=3,
因此被圆x2+y2-2x+4y=0截得的最长弦所在直线的方程是y-1=3(x-2),即为3x-y-5=0.
故选:A.
点评:本题考查直线与圆相交的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
函数f(x)=
+
的定义域为( )
| 1 | ||
|
| 4-x2 |
| A、[-2,0)∪(0,2] |
| B、(-1,0)∪(0,2] |
| C、[-2,2] |
| D、(-1,2] |
已知集合M={1,2},且M∪N={1,2,3},则集合N可以是( )
| A、{1,2} | B、{1,3} |
| C、{2} | D、{1} |
若定义在R上的函数y=f(x)满足f(
+x)=f(
-x)且(x-
)f′(x)<0,则对于任意的x1<x2,都有f(x1)>f(x2)是x1+x2>5的( )
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
设α是第二象限角,p(x,4)为其终边上的一点,且cosα=
x,则tan2α=( )
| 1 |
| 5 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
定义在R上的函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有
<0,则( )
| f(x2)-f(x1) |
| x2-x1 |
| A、f(3)<f(2)<f(4) |
| B、f(1)<f(2)<f(3) |
| C、f(2)<f(1)<f(3) |
| D、f(3)<f(1)<f(0) |