题目内容

8.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin(2x+$\frac{π}{3}$)-cos2x+$\frac{1}{2}$.
(Ⅰ)求函数f(x)在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,f(A)=$\frac{1}{4}$,a=3,求△ABC面积的最大值.

分析 (Ⅰ)函数f(x)解析式利用两角和与差的正弦函数公式,二倍角的余弦函数公式化简,整理为一个角的正弦函数,利用正弦函数的单调性确定出f(x)在[0,π]上的单调递增区间即可;
(Ⅱ)由f(A)的值,确定出A的度数,利用余弦定理求出bc的最大值,进而求出三角形ABC面积的最大值即可.

解答 解:(Ⅰ)f(x)=$\frac{\sqrt{3}}{2}$($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)-$\frac{1}{2}$cos2x=$\frac{1}{2}$($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
∵x∈[0,π],
∴函数f(x)在[0,π]上的单调递增区间为[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π];
(Ⅱ)由f(A)=$\frac{1}{2}$sin(2A+$\frac{π}{6}$)=$\frac{1}{4}$得:sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
∴A=$\frac{π}{3}$,
由余弦定理知a2=9=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴bc≤9(当且仅当b=c时等号成立),
∴S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×9×$\frac{\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{4}$,
∴△ABC面积的最大值为$\frac{{9\sqrt{3}}}{4}$.

点评 此题考查了余弦定理,三角形面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网