题目内容

19.若tan($\frac{π}{4}$-x)=$\frac{5}{13}$,求$\frac{cos2x}{cos(\frac{π}{4}+x)}$的值.

分析 利用两角和与差的三角函数化简求解即可.

解答 解:tan($\frac{π}{4}$-x)=$\frac{5}{13}$,可得$\frac{1-tanx}{1+tanx}=\frac{5}{13}$,$\frac{cosx-sinx}{cosx+sinx}$=$\frac{5}{13}$,解得tanx=$\frac{4}{9}$.
$\frac{co{s}^{2}x-si{n}^{2}x}{\frac{\sqrt{2}}{2}(cosx-sinx)}$=$\sqrt{2}$(cosx+sinx)=$±\sqrt{2}$×$\sqrt{\frac{({sinx+cosx)}^{2}}{si{n}^{2}x+co{s}^{2}x}}$=$±\sqrt{2}×$$\sqrt{\frac{ta{n}^{2}x+2tanx+1}{ta{n}^{2}x+1}}$=$±\sqrt{2}×\sqrt{\frac{\frac{16}{81}+\frac{8}{9}+1}{\frac{16}{81}+1}}$
=$±\frac{13\sqrt{194}}{97}$.

点评 本题考查两角和与差的三角函数,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网