题目内容
考点:球内接多面体
专题:综合题,空间位置关系与距离
分析:设正△ABC的中心为O1,连结O1O、O1C、O1D、OD.根据球的截面圆性质、正三角形的性质与勾股定理,结合题中数据算出OD=
.而经过点D的球O的截面,当截面与OD垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.
| ||
| 2 |
解答:
解:
设正△ABC的中心为O1,连结O1O、O1C、O1D、OD,
∵O1是正△ABC的中心,A、B、C三点都在球面上,
∴O1O⊥平面ABC,结合O1C?平面ABC,可得O1O⊥O1C,
∵球的半径R=2,球心O到平面ABC的距离为1,得O1O=1,
∴Rt△O1OC中,O1C=
.
又∵D为BC的中点,∴Rt△O1DC中,O1D=
O1C=
.
∴Rt△OO1D中,OD=
.
∵过D作球O的截面,当截面与OD垂直时,截面圆的半径最小,
∴当截面与OD垂直时,截面圆的面积有最小值.
此时截面圆的半径r=
,可得截面面积为S=πr2=
.
故答案为:
.
∵O1是正△ABC的中心,A、B、C三点都在球面上,
∴O1O⊥平面ABC,结合O1C?平面ABC,可得O1O⊥O1C,
∵球的半径R=2,球心O到平面ABC的距离为1,得O1O=1,
∴Rt△O1OC中,O1C=
| 3 |
又∵D为BC的中点,∴Rt△O1DC中,O1D=
| 1 |
| 2 |
| ||
| 2 |
∴Rt△OO1D中,OD=
| ||
| 2 |
∵过D作球O的截面,当截面与OD垂直时,截面圆的半径最小,
∴当截面与OD垂直时,截面圆的面积有最小值.
此时截面圆的半径r=
| 3 |
| 2 |
| 9π |
| 4 |
故答案为:
| 9π |
| 4 |
点评:本题已知球的内接正三角形与球心的距离,求经过正三角形中点的最小截面圆的面积.着重考查了勾股定理、球的截面圆性质与正三角形的性质等知识,属于中档题.
练习册系列答案
相关题目