题目内容
9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0(1)求角B的大小;
(2)若a+c=2,b=1,求△ABC的面积.
分析 (1)由已知得$-cos(A+B)+cosAcosB-\sqrt{3}sinAcosB=0$,$tanB=\sqrt{3}$,即$B=\frac{π}{3}$.
(2)由余弦定理,b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB).即ac=1.即可求出△ABC的面积
解答 解:(1)由已知得$-cos(A+B)+cosAcosB-\sqrt{3}sinAcosB=0$,即有$sinAsinB-\sqrt{3}sinAcosB=0$
因为sinA≠0,所以$sinB-\sqrt{3}cosB=0$,又cosB≠0,所以$tanB=\sqrt{3}$,
又0<B<π,所以$B=\frac{π}{3}$.
(2)由余弦定理,有b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB).
因为$a+c=2,cosB=\frac{1}{2},b=1$,有ac=1.
于是有${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{2}$.
点评 本题考查了三角恒等变形、余弦定理,属于中档题.
练习册系列答案
相关题目
20.某市调研考试后,某校对甲乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的列联表,且已知甲、乙两个班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名同学从2到10进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求9号或10号概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
独立性检验临界值
| 优秀 | 非优秀 | 合计 | |
| 甲 | 10 | ||
| 乙 | 30 | ||
| 合计 | 110 |
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名同学从2到10进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求9号或10号概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
独立性检验临界值
| P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
17.
如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是( )
| A. | $\frac{n}{m}$ | B. | $\frac{2n}{m}$ | C. | $\frac{3n}{m}$ | D. | $\frac{2m}{n}$ |
4.若a=$\frac{ln3}{3}$,b=$\frac{ln5}{5}$,c=$\frac{ln6}{6}$,则( )
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
14.“雷神”火锅为提高销售业绩,委托我校同学研究气温对营业额的影响,并提供了一份该店在3月份中5天的日营业额y(千元)与当日最低气温x(℃)的数据,如表:
(Ⅰ)请你求出y关于x的回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若4月份某天的最低气温为13摄氏度,请预测该店当日的营业额.
【参考公式】$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
(Ⅱ)若4月份某天的最低气温为13摄氏度,请预测该店当日的营业额.
【参考公式】$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
1.若圆x2+y2-4x=0上恰有四个点到直线2x-y+m=0的距离等于1,则实数m的取值范围是方程是( )
| A. | $({-2-\sqrt{5},-2+\sqrt{5}})$ | B. | $({-4-\sqrt{5},-4+\sqrt{5}})$ | C. | $({-4-3\sqrt{5},-4-\sqrt{5}})$ | D. | $({-4+\sqrt{5},-4+3\sqrt{5}})$ |
19.复数z满足z(2+i)=3-6i(i为虚数单位),则复数z的虚部为( )
| A. | 3 | B. | -3 | C. | 3i | D. | -3i |