ÌâÄ¿ÄÚÈÝ
12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªAn£¨n£¬an£©£¬Bn£¨n£¬bn£©£¬Cn£¨n-1£¬0£©£¬£¨n¡ÊN*£©£¬Âú×ãÏòÁ¿$\overrightarrow{{A_n}{A_{n+1}}}$ÓëÏòÁ¿$\overrightarrow{{B_n}{C_n}}$¹²Ïߣ¬ÇÒbn+1-bn=6Èôa1=6£¬b1=12£®£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨2£©ÇóÊýÁÐ$\left\{{\frac{1}{a_n}}\right\}$µÄǰnÏîºÍTn£®
·ÖÎö £¨1£©ÓÉÌâÒâµÃbn=12+6£¨n-1£©=6£¨n+1£©£¬$\overrightarrow{{A_n}{A_{n+1}}}$=£¨1£¬an+1-an£©£¬$\overrightarrow{{B_n}{C_n}}$=£¨-1£¬-bn£©£¬´Ó¶ø¿ÉµÃan+1-an=bn=6£¨n+1£©£¬ÀûÓÃÀÛ¼Ó·¨ÇóͨÏ
£¨2£©»¯¼ò$\frac{1}{{a}_{n}}$=$\frac{1}{3}$$\frac{1}{n£¨n+1£©}$=$\frac{1}{3}$£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬´Ó¶øÀûÓÃÁÑÏîÇóºÍ·¨ÇóǰnÏîºÍ£®
½â´ð ½â£º£¨1£©¡ßbn+1-bn=6£¬b1=12£»
¡àbn=12+6£¨n-1£©=6£¨n+1£©£¬
¡ßAn£¨n£¬an£©£¬Bn£¨n£¬bn£©£¬Cn£¨n-1£¬0£©£¬
¡à$\overrightarrow{{A_n}{A_{n+1}}}$=£¨1£¬an+1-an£©£¬$\overrightarrow{{B_n}{C_n}}$=£¨-1£¬-bn£©£¬
ÓÖ¡ßÏòÁ¿$\overrightarrow{{A_n}{A_{n+1}}}$ÓëÏòÁ¿$\overrightarrow{{B_n}{C_n}}$¹²Ïߣ¬
¡àan+1-an=bn=6£¨n+1£©£¬
¡àan-an-1=6n£¬
¡àa2-a1=12£¬
a3-a2=18£¬
¡
an-an-1=6n£»
Ïà¼Ó¿ÉµÃ£¬
an-a1=12+18+¡+6n£¬
¹Êan=6+12+18+¡+6n=$\frac{6+6n}{2}$n£¬
¹Êan=3£¨n+1£©n£¬
£¨2£©$\frac{1}{{a}_{n}}$=$\frac{1}{3}$$\frac{1}{n£¨n+1£©}$=$\frac{1}{3}$£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬
¹ÊTn=$\frac{1}{3}$£¨1-$\frac{1}{2}$£©+$\frac{1}{3}$£¨$\frac{1}{2}$-$\frac{1}{3}$£©+$\frac{1}{3}$£¨$\frac{1}{3}$-$\frac{1}{4}$£©+¡+$\frac{1}{3}$£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©
=$\frac{1}{3}$£¨1-$\frac{1}{n+1}$£©=$\frac{n}{3n+3}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÄͨÏʽµÄÇ󷨼°Ç°nÏîºÍ¹«Ê½µÄÓ¦Óã¬Í¬Ê±¿¼²éÁËÆ½ÃæÏòÁ¿µÄÓ¦Óã®
| A£® | £¨a+b£©£¨$\frac{1}{a}$+$\frac{1}{b}$£©¡Ý4 | B£® | |a-b|+$\frac{1}{a-b}$¡Ý2 | C£® | $\sqrt{a+3}$-$\sqrt{a+1}$¡Ü$\sqrt{a+2}$-$\sqrt{a}$ | D£® | $\sqrt{|a-b|}$¡Ý$\sqrt{a}$-$\sqrt{b}$ |
| A£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | B£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» | ||
| C£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | D£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» |
| A£® | {a}⊆M | B£® | a⊆M | C£® | {a}¡ÊM | D£® | a∉M |