题目内容

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则(  )
A.z的最小值为3,z无最大值B.z的最小值为1,最大值为3
C.z的最小值为3,z无最小值D.z的最小值为1,z无最大值

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件作出可行域如图,
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(1,-1)时
直线在y轴上的截距最小,z最小,为2×1-1=1,
无最大值.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网