题目内容

7.已知g(x)=mx+2,f(x)=x2-2x,若对?x1∈[-1,2].?x0∈[-1,2],有g(x1)=f(x0)成立,则m的取值范围是[-1,$\frac{1}{2}$].

分析 由已知中f(x)=x2-2x,g(x)=mx+2,对?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),可得函数g(x)=mx+2在区间[-1,2]上的值域是函数f(x)=x2-2x在区间[-1,2]上的值域的子集,由此可以构造关于m的不等式,解不等式即可求出m的取值范围.

解答 解:∵f(x)=x2-2x,
∴x0∈[-1,2],
∵f(x0)∈[-1,3]
又∵?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),
若m>0,则g(-1)≥-1,g(2)≤3
解得-$\frac{1}{2}$≤m≤$\frac{1}{2}$,
即0<m≤$\frac{1}{2}$,
若m=0,则g(x)=2恒成立,满足条件;
若m<0,则g(-1)≤3,g(2)≥-1
解各m≥-1
即-1≤m<0
综上满足条件的m的取值范围是-1≤m≤$\frac{1}{2}$
故m的取值范围是[-1,$\frac{1}{2}$]
故答案为:[-1,$\frac{1}{2}$].

点评 本题考查的知识点是函数的值域,函数的定义域及其求法,二次函数的性质,其中根据已知条件对m进行分类讨论,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网