题目内容
14.设a>0,若关于x,y的不等式组$\left\{\begin{array}{l}{ax-y+2≥0}\\{x+y-2≥0}\\{x-2≤0}\end{array}\right.$,表示的可行域与圆(x-2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为( )| A. | [8,10] | B. | (6,+∞) | C. | (6,8] | D. | [8,+∞) |
分析 由题意画出图形,化目标函数为直线方程的斜截式,由图得到使目标函数取得最大值的最优解的点的位置得答案.
解答 解:如图,作出不等式组大致表示的可行域.![]()
圆(x-2)2+y2=9是以(2,0)为圆心,以3为半径的圆,
而直线ax-y+2=0恒过定点(0,2),当直线ax-y+2=0过(2,3)时,a=$\frac{1}{2}$.
数形结合可得a$≥\frac{1}{2}$.
化目标函数z=x+2y为y=$-\frac{x}{2}+\frac{z}{2}$,
由图可知,当目标函数过点(2,2a+2)时,z取得最大值为4a+6,
∵a$≥\frac{1}{2}$,∴z≥8.
∴z=x+2y的最大值的取值范围为[8,+∞).
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,正确画出可行域是关键,属中档题.
练习册系列答案
相关题目
5.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,则双曲线C的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\sqrt{6}$ |
19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则( )
| A. | z的最小值为3,z无最大值 | B. | z的最小值为1,最大值为3 | ||
| C. | z的最小值为3,z无最小值 | D. | z的最小值为1,z无最大值 |
3.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个周)和市场占有率(y%)的几组相关数据如表:
(Ⅰ)根据表中的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.