题目内容
8.下列函数中,与函数y=ln(x-1)定义域相同的是( )| A. | $y=\frac{1}{x-1}$ | B. | $y={(x-1)^{-\frac{1}{2}}}$ | C. | y=ex-1 | D. | $y=\sqrt{sin(x-1)}$ |
分析 求出函数y=ln(x-1)的定义域,分别求出A、B、C、D中的函数的定义域,求出答案尽快.
解答 解:函数y=ln(x-1)的定义域是(1,+∞),
对于A,函数的定义域是{x|x≠1},
对于B,函数的定义域是(1,+∞),
对于C,函数的定义域是R,
对于D,函数的定义域是{x|2kπ+1≤(2k+1)π+1},
故选:B.
点评 本题考查了求函数的定义域问题,考查常见函数的性质,是一道基础题.
练习册系列答案
相关题目
18.若一个几何体的三视图如下图所示,则这个几何体是( )

| A. | 三棱锥 | B. | 四棱锥 | C. | 三棱柱 | D. | 四棱柱 |
19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则( )
| A. | z的最小值为3,z无最大值 | B. | z的最小值为1,最大值为3 | ||
| C. | z的最小值为3,z无最小值 | D. | z的最小值为1,z无最大值 |
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=4x的交点为A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为( )
| A. | $\sqrt{2}$+1 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$-1 | D. | 2$\sqrt{2}$-2 |
3.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个周)和市场占有率(y%)的几组相关数据如表:
(Ⅰ)根据表中的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.
13.已知函数f(x)是定义在R上的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函数g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且仅有6个不同的零点,则实数a的取值范围( )
| A. | $(0,1]∪\left\{{\frac{3}{2}}\right\}$ | B. | $(0,\frac{3}{2}]$ | C. | $(0,1)∪\left\{{\frac{3}{2}}\right\}$ | D. | $(0,\frac{3}{2})∪\left\{0\right\}$ |