题目内容
已知函数f(x)对任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
)和f(
)+f(
)(n∈N*)的值;
(2)数列f(x)满足an=f(0)+f(
)+f(
)+…+f(
)+f(1),(n∈N*),求证:数列f(x)是等差数列;
(3)若bn=
,Tn=b12+b22+b32+…+bn2,Sn=
,试比较Tn与Sn的大小.
(1)求f(
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(2)数列f(x)满足an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(3)若bn=
| 1 |
| an-1 |
| 10n |
| 6n+3 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)分别令x=
,x=
,结合条件,即可求出结果;
(2)令x=
,再应用倒序求和求出an,再由等差数列的定义,即可得证;
(3)先对bn化简,再将bn2放缩,即bn2<2(
-
),再用裂项相消求和,再整理即可得到答案.
| 1 |
| 2 |
| 1 |
| n |
(2)令x=
| k |
| n |
(3)先对bn化简,再将bn2放缩,即bn2<2(
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
(1)解:∵f(x)+f(1-x)=2,
∴f(
)+f(1-
)=2f(
)=2,
∴f(
)=1,
令x=
,得f(
)+f(
)=2.
(2)证明:an=f(0)+f(
)+f(
)+…+f(
)+f(1),①
an=f(1)+f(
)+f(
)+…+f(1)+f(0),②
①+②,得:2an=[f(0)+f(1)]+[f(
)+f(
)]+…+[f(1)+f(0)]=2×(n+1),
∴an=n+1,
∴数列f(x)是等差数列.
(3)解:由(2)有bn=
=
∴
=
=
<
=2(
-
),
∴Tn=b12+b22+b32+…+bn2<2(1-
+
-
+…+
-
)=2(1-
)=
=Sn
∴Tn<Sn
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
令x=
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
(2)证明:an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
an=f(1)+f(
| n-1 |
| n |
| n-2 |
| n |
①+②,得:2an=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
∴an=n+1,
∴数列f(x)是等差数列.
(3)解:由(2)有bn=
| 1 |
| an-1 |
| 1 |
| n |
| b | 2 n |
| 1 |
| n2 |
| 4 |
| 4n2 |
| 4 |
| 4n2-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b12+b22+b32+…+bn2<2(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 4n |
| 2n+1 |
∴Tn<Sn
点评:本题主要考查函数的对称性及应用,同时考查等差数列的定义和通项公式,以及数列求和,及数列不等式的证明:放缩法,是一道综合题.
练习册系列答案
相关题目
已知点O为△ABC内一点,且
+2
+3
=
,则△AOB,△AOC,△BOC的面积之比等于( )
| OA |
| OB |
| OC |
| 0 |
| A、9:4:1 |
| B、1:4:9 |
| C、3:2:1 |
| D、1:2:3 |
已知函数f(x)满足f(x)=2f(
),当x∈[1,3],f(x)=lnx,若在区间[
,3]内,函数g(x)=f(x)-ax与x轴有3个不同的交点,则实数a的取值范围是( )
| 1 |
| x |
| 1 |
| 3 |
A、(0,
| ||||
B、(0,
| ||||
C、[
| ||||
D、[
|